

ABSTRACT

Algorithmic Analysis of Regular Repeated Games

by

Suguman Bansal

The problem on computing rational behaviors in multi-agent systems with self-

ish agents (Games) has become paramount for the analysis of such systems. Nash

equilibria is one of themost central notions of rational behavior. While the problem

of computing Nash equilibria in simple games is well understood, the same cannot

be said for more complex games. Repeated games are one such class of games.

In this thesis, we introduce regular repeated games as amodel for repeated games

with bounded rationality. In regular repeated games, agent strategies are given by

weighted (discounted-sum aggregate), non-deterministic Büchi transducers. We

design an algorithm ComputeNash to compute all Nash equilibria in a regular

repeated game. The crux of the algorithm lies in determining if a strategy profile

is in Nash equilibria or not. For this it is necessary to compare the discounted sum

on one infinite execution with that one other executions. Such relational reasoning

has not been studies in the literature before. To this end, we introduce the concept

of an ω-regular comparators.

We demonstrate promise of our approach via experimental analysis on case

studies: Iterated Prisoner’s Dilemma, repeated auctions, and amodel of the Bitcoin

protocol.

Dedicated to my grandparents,

Srimati Kasturi Devi

and

Late Sri Nidhi Agarwal

To Mummy, my guiding light during her life and after

Acknowledgements

I can no other answer make, but, thanks, and thanks. ∼William Shakespeare

First of all, I would like to thank my advisor and mentor, Prof. Swarat Chaudhuri,

for guiding me through every step in the completion of this thesis. The rawmathe-

matician in me would never have been evolving into a budding computer scientist

had it not been for your constant encouragement to explore unfamiliar territories.

Thank you for your unwavering support, confidence and patience with me during

failure and moments of despair.

I would like to thank Prof. Moshe Y. Vardi for his astute comments on early

drafts of this thesis. I have had, and look forward to continue to have the pleasure

to learn from the shadows of your experience. But most importantly, I would like

to thank you for your timely mentorship and advice.

I would also like to thank Prof. Luay Nakhleh, and Prof. Andrew J. Schaefer

for agreeing to be on my committee, and for evaluating this thesis.

No journey is complete without the camaraderie of amazing friends. And mine

has been no exception. Thank you, Dror and Kuldeep, for I cannot recall any

celebration, any discussion, any rant, any struggle I may have had in the past two

years without the company of you guys. Here it is, raising a toast to many, many

more coffee breaks and quick dinners!

Thank you, Milind and Shams, for still responding to my novice PhD student

queries. I am greatful for the friendship of Aditya, Afsaneh, Arko, Harsh, Jack,

Karthik, Prasanth, Risa, Rohan, Ronnie, Ryan, Sarah, Simba, Sourav, and many

more for bringing more colors than the walls of Duncan Hall into my graduate

student experience.

Houston would have been so lack-lusture had it not been for the friendship that

germinated over the sole intent of finishing that rice - Sushma; the (un)fortunate

taster of all my culinary expeditions - Sapna; and Rakesh for sharing the love for

Biryani and desserts.

Dhananjay, Siddharth, Siddhesh, and Visu, thank you for always being just a

phone call away since our undergraduate days. Saheli, thank you for continuing

to inspire me with your unbeatable spirit since our good old school days.

I owe my deepest gratitude to my parents and brother. I cannot express in words

how much comfort I get in knowing that across the oceans and continents lies a

home that unconditionally roots for me.

This is a bitter-sweet moment for us. This thesis has been the most difficult

and most important reward I have gotten so far. Even the smallest prize I received

made you revel for days. Now we can only imagine how proud of me you must be

today . . . We miss you, Mummy.

Contents

Abstract i

List of Illustrations

1 Introduction 1

1.1 Equilibria computation in repeated games 2

1.2 Contributions . 5

1.3 Organization . 7

2 Preliminaries 9

2.1 Game-theoretic concepts . 9

2.1.1 Repeated Games . 9

2.1.2 Solution concepts . 10

2.2 Automata-theoretic concepts . 11

2.2.1 Finite automata . 11

2.2.2 Büchi automata . 11

2.2.3 Weighted Büchi transducer 12

3 Regular Repeated Games 14

3.1 Regular repeated games . 14

3.1.1 Comparison with the Rubinstein model 19

3.1.2 Solution concepts . 21

3.1.3 Size of repeated regular games 23

3.2 Summary . 24

4 Computing Equilibria 25

4.1 Prior work . 25

4.2 Computing Nash equilibria . 27

4.2.1 ComputeNash algorithm description 27

4.2.2 Analysis of ComputeNash . 33

4.2.3 Best response strategy . 37

4.3 Experimental results . 38

4.3.1 Iterated Prisoner’s Dilemma (IPD) 39

4.3.2 Bitcoin Protocol . 43

4.4 Summary . 49

5 ω-Regular Comparator 51

5.1 Prior work . 52

5.2 Discounted sum comparator . 53

5.3 Limit average comparator . 64

5.4 Summary . 70

6 Concluding remarks 71

6.1 Summary . 71

6.2 Future directions . 73

6.2.1 Exploration of ω-regular comparator 73

6.2.2 Extension of regular repeated games 74

6.2.3 Frameworks for other games 74

Bibliography 75

Illustrations

1.1 Reward table for Prisoner’s Dilemma (PD) 3

1.2 TFT(Tit-For-Tat) . 3

3.1 IPD: Only Defect . 19

3.2 IPD: Grim Trigger . 19

3.3 IPD Strategy profile (Only Defect, Grim Trigger) 19

3.4 Payoff table for Iterated Prisoner’s Dilemma Strategies 20

3.5 TF2T(Tit-for-Tat-with-Forgiveness) 20

4.1 ComputeNash: Strategy Profile T . 31

4.2 ComputeNash: Ŝ = AugmentWtAndLabel(S) 31

4.3 ComputeNash: T̂ = AugmentWtAndLabel(T) 31

4.4 ComputeNash: Âprod = Ŝ × T̂ . 33

4.5 ComputeNash: Witness = Âprod ∩∗2A≻DS(2)
. 33

4.6 ComputeNash: Nash . 33

4.7 Strategies for agents under IPD . 40

4.8 Strategies for agents under finitely repeated Prisoner’s Dilemma . . 42

4.9 Honest strategy in Bitcoin protocol 43

4.10 Dishonest strategy in Bitcoin protocol 45

4.11 Auction Strategies for P1 in 2-agent auction 47

5.1 Snippet of A≻DS(2)
. 55

5.2 Discarded SCC . 70

List of Algorithms

1 ComputeNash(d,Strategy(1),Strategy(2), . . . ,Strategy(k)) 28

2 Witness(i,StrategyProfile(1),StrategyProfile(2)) 50

1

Chapter 1

Introduction

Most real life interactions can be studied as multi-agent systems in which each

agent has its own objectives. Such systems range from simple two-agent interac-

tions such as a game of tic-tac-toe to massive online protocols such as the auction

protocols adopted by cyber giants such as Google and eBay. The objective of agents

in these systems may differ. In a game of tic-tac-toe, the objective of agents may be

to win the game, whereas in an auction it may be to win the auction at the lowest

possible bid. In other multi-agent systems such as the market place where firms

produce the same goods, agents (firms) interact by assigning a price to their goods.

In this case, the agent’s objective could be for all firms to assign the same price to

the goods, in order to promote mutual co-operation in the market place.

An agent is said to be rational if it interacts in a manner to fulfill its objec-

tive. The computation of rational behavior of agents enables us to better analyze

properties of these systems. These systems and their rational behaviors are mod-

eled and analyzed under the field of Game Theory [52]. Modern game theory has

proliferated with diverse applications in economics [31, 33, 42, 51, 66], social sci-

ences [18, 45, 46], biology [9, 24, 39, 67], etc. Unsurprisingly, the computation of

rational behaviors in multi-agent systems with agents with objectives has garnered

a lot of interest in utilitarian research from diverse communities.

One concrete instance of computation of rational behaviors to analyze such

systems arises in the context of the Bitcoin protocol. Bitcoins are one of the most

widely used on-line currency in today’s time. The protocol by which Bitcoins are

mined (minted) is called the Bitcoin protocol. Agents (miners) of the protocol re-

2

ceive rewards by mining more Bitcoins The objective of agents is to maximize their

rewards from the protocol. Earlier it was believed that miners receive the most re-

ward when they mine by abiding by the policies of the protocol. Since the protocol

rewarded miners proportional to the number of Bitcoins they mined, it was be-

lieved that rational agents would abide by the policies of the protocol. However, a

surprising result by Eyal and Sirer disproved this misconception[32]. They proved

via rigorous manual computation and analysis that there exists a rational behavior

in ehich agents receive greater rewards by deviating from the protocol policies.

Hence, rational agents would have an incentive to deviate from the protocol poli-

cies, which is an undesired trait for the Bitcoin protocol.

The above example illustrates that erroneous system design is common, and

can have tremendous harm on all participating agents. This point reinstates the

importance of computation of rational behaviors. However, as the number of

agents and the complexity of such systems increases, the difficulty of the manual

computation of rational behaviors also increases. This necessitates the need for

algorithmic development of techniques for computation of rational behaviors in

complex multi-agent systems. The problem of computation of rational behaviors

has been studied under algorithmic game theory [50].

This thesis is a step towards developing a framework and algorithmic tech-

niques for computation of rational behaviors in complex multi-agent systems. Sec-

tion 1.1 provides a broad overview of the game-theoretic approach for analysis of

complex multi-agent systems. Section 1.2 briefly describes the contributions of

this thesis. The structure of the thesis is provided in Section 1.3.

1.1 Equilibria computation in repeated games

In game theory, multi-agent systems with objective driven agents are modeled as

games. A game consists of multiple agents. These agents interact with each other

synchronously, and receive rewards from each interaction. Consider the classic

3

Cooperate (C) Defect (D)

Cooperate (C) (3,3) (0,4)

Defect (D) (4,0) (1,1)

Figure 1.1 : Reward table for Pris-

oner’s Dilemma (PD)

q0start q1

(C,C)

(C,D)

(D,D)

(D,C)

Figure 1.2 : TFT(Tit-For-Tat), See

Chapter 3

game of Prisoner’s Dilemma [52]. In this system agents interact by either cooper-

ating with the other agent (action C) or by defecting on the other agent (action D).

Agents receive rewards according to Table 1.1.

Rational behavior in games are studied as solution concepts. Various solution

concepts have been studied for games. One such solution concept is that of Nash

equilibria [47]. Intuitively, Nash equilibrium corresponds to a global scenario in

a system in which no agent can receive a greater reward by unilaterally changing

its decision. In the Prisoner’s Dilemma game as shown in Table 1.1, (D,D) is said

to be in Nash equilibria since from here no agent can receive a greater reward by

changing its decision. Since its inception in the 1950s, Nash equilibrium has been

a fundamental notion of rationality. Nash equilibria has found widespread appli-

cations in network analysis, analysis of large economic systems such as auctions

and non-cooperative markets, biology etc [38, 56, 65, 67].

Games such as the Prisoner’s Dilemma are called one-shot games, since agents

interact only once. Celebrated results by Chen, Deng and Teng show that compu-

tation of a single Nash equilibrium in one-shot games is PPAD-Complete [22, 23].

Other notable works in the computation of Nash equilibria in one-shot games ar-

rived from Conitzer and Sandholm[25], and Daskalakis, Goldberg and Papadim-

itriou [27]. In short, our understanding of the hardness and algorithms for com-

puting Nash equilibrium in one-shot games has been well established.

4

However, most real life interactions are rarely one-off. The more typical sce-

nario are ones in which agents interact repeatedly. In this thesis we focus on re-

peated games with an infinite number of interactions. Agents receive rewards for

each round of interaction. The total reward of any agent is computed by accumu-

lating the rewards received in all rounds of interaction using the discounted-sum

aggregate function. These are called infinitely repeated games. For simplicity, we

will refer to infinitely repeated games as repeated games. Intuitively, a repeated

game occurs when a one-shot game occurs infinitely many times. An agent’s be-

havior in any given round is determined by previous interactions. For all practical

purposes, it is justified to assume that agent’s behavior will depend on a bounded

amount of information from previous interactions. Repeated games with bounded

information are called repeated games with bounded rationality [38, 59].

Finite state machines have been used to model repeated games with bounded

rationality [2, 5, 8, 40, 54, 57]. In this model, states capture intuitions of the

bounded amount of information.

As an example, consider a repeated version of the prisoner’s dilemma game.

For this repeated version, an agent begins the game with co-operating with the

other agent, and imitates the other agent’s action from the previous round in all

subsequent rounds. This strategy is called the tit-for-tat strategy. Note that tit-

for-tat is a strategy with bounded rationality since an agent’s behavior depends on

the immediately previous interaction only. The finite state machine denoting this

strategy is depicted in Figure 1.2. Each transition denotes one round of interaction

in the game. Label (a,b) on transitions denotes that the first and second agents take

actions are a and b respectively. Rewards of agents for each round are as shown

in Table 1.1. Furthermore, state q0 and q1 denote the states from which the first

agent always plays C andD respectively. Note that q0 and q1 also denote the states

at which the second agent has performed C and D respectively in the previous

round. Hence, the states are capturing intuitions about the bounded amount of

5

information for the tit-for-tat strategy.

Unlike the case of one-shot games, the problem of Nash equilibrium compu-

tation in repeated games with bounded rationality has not been fully resolved.

Of existing work on the topic of equilibria computation in repeated games with

bounded rationality, seminal work by Abreu, Pearce, and Stacchetti [1], and its

followups [26], considered the problem of computing all or some equilibrium re-

wards rather than the equilibria themselves. The problem of efficiently comput-

ing a single equilibrium strategy in infinitely repeated games has been studied

before [4, 35, 37]. To the best of our knowledge, these approaches cannot be ex-

tended to compute the set of all Nash equilibria in a repeated game. There are

also a few approaches to computing representations of approximations to the set

of equilibria [11, 12, 17]. Except for work on finding one equilibrium, most other

approaches do not guarantee crisp complexity bounds for exactly computing all

Nash equilibria in a repeated game. This thesis addresses this caveat: providing

algorithmic techniques with crisp complexity bounds for the computation of all

Nash equilibria in repeated games with bounded rationality.

1.2 Contributions

This thesis works towards identifying a class of games on which we develop algo-

rithmic techniques to compute Nash equilibria in repeated games. The focus of

this thesis is on simultaneous, non-zero sum games, with infinite repetition over

bounded rationality.

First, we identify a new class of repeated games, that we call regular repeated

games, on which the problem of computation of Nash equilibria can be solved.

Regular repeated games are a finite-state machine based model for games in which

agent strategies are encoded by finite transducers. Agents in regular repeated

games have a finite number of strategies, each given by a weighted, non-deterministic

Büchi transducer, where the input on each transition are the actions of all other

6

agents and the output is the agents’ action. Weights on transitions denote agent

rewards, and the reward from each execution in the strategy transducer is given

by the discounted sum of rewards on each transition. In a game execution, each

agent picks its’ strategy. These strategies compose synchronously on agent actions.

This is called a strategy profile, which is a finite state weighted Büchi automata,

on which weight tuples on transitions denote the reward of each agent. As earlier,

agent reward on executions are computed using the discounted sum.

Intuitively, regular repeated games can be treated as an extension of a well es-

tablished model for repeated games proposed by Rubinstein in 1986 [57]. The key

difference between regular repeated games and previous finite state based models,

including the Rubinstein model for repeated games [2, 5, 8, 40, 54, 57], is that

regular repeated games are defined such that they can handle non-determinism

(as a model of uncertainty) in strategies. Hence, in addition to being amenable to

algorithms for Nash equilibria computation, regular repeated games are also more

expressible that previous models of repeated games. In fact, in this thesis, we will

show that complex systems such as the Bitcoin protocol can be modeled in this

framework.

The main contribution of this thesis is an algorithm for the computation of all

Nash equilibria in a regular repeated game. As was mentioned in the previous

section, earlier approaches pertaining to Nash equilibria computation have dealt

with determining the equilibria rewards, computation of a single equilibria, or de-

termining an approximation to the set of equilibria. The algorithm presented in

this thesis computes all Nash equilibria, and has a crisp complexity bound: the

algorithm is polynomial in the size of the game when all player strategies are de-

terministic, and is exponential in the size of the game otherwise (See Section 3.1.3).

The crux of the algorithm lies in determining whether an agent strategy is in

Nash equilibria or not. For this, it is necessary to compare the rewards received

by agents on executions. The technical problem reduces to the following: Given

7

two weighted Büchi automata, where the aggregate of executions is given by the

discounted sum. How does one compare the aggregate on each execution of one

automata with executions in the other? To the best of our knowledge, there is no

existing approach of this sort of relational reasoning in weighted automata.

This thesis develops a novel automata theoretic approach to enable such rela-

tional reasoning: ω-regular comparator. An ω-regular comparator is a Büchi au-

tomaton that accepts a pair of infinitely long number sequences iff the aggregate

(e.g. discounted sum) of the sequences satisfy a given equality/inequality rela-

tionship. In other words, let A and B be two infinite number sequence. Then

the ω-regular comparator for the discounted sum aggregate function accepts the

pair (A,B) iff the discounted sum of A is greater than the discounted sum of B.

Hence ω-regular comparators reduce the problem of quantitative comparison into

a qualitative problem of acceptance by an automaton. In this thesis, we present an

ω-regular comparator for the discounted sum aggregate function, and provide an

exploratory discussion on the possibility of an ω-regular comparator for the limit

average aggregate function.

To demonstrate the practical utility of our approach, we built a prototype tool

of the algorithm, and computed the equilibria set for regular repeated game mod-

els of the classical Iterated Prisoner’s Dilemma (IPD) [38], repeated auctions and

the Bitcoin protocol. The resulting equilibria sets are consistent with classical re-

sults on the IPD and repeated auctions. In the case of the Bitcoin protocol, we

proved that the protocol is not incentive compatible. This is similar to Eyal and

Sirer’s result![32] expect that there the result was obtained via manual proofs while

ours was obtained via algorithmic analysis.

1.3 Organization

The rest of the thesis is organized as follows:

Chapter 2 discusses the necessary background in automata theory and game

8

theory required for the thesis.

Chapter 3 provides the formal definitions of regular repeated games, and solu-

tion concepts in them.

Chapter 4 describes ComputeNash, our algorithm for computing all Nash equi-

libria in regular repeated games, and our results from experimental analysis on

various repeated games.

Chapter 5 introduces ω-regular comparator in detail.

Lastly, this thesis concludes with a summary and a discussion on some future

directions in Chapter 6.

9

Chapter 2

Preliminaries

This chapter introduces the necessary definitions and notations from game theory

and automata theory required for the rest of this thesis.

2.1 Game-theoretic concepts

An interaction between multiple agents are modeled as games. Each agent receives

a quantitative reward, called payoff, from each interaction that depends on the

actions of all agents. Payoffs capture the gains or losses of an agent in each interac-

tion. Gains and losses correspond to higher and lower payoffs respectively. Agents

are said to be rational if they act in a manner that optimizes their payoff.

Game theory [52] is the mathematical study of games. The central question of

game theory pertains to the behavior of rational agents.

2.1.1 Repeated Games

We are interested in games of a specific kind: infinitely repeated games with bounded

rationality [38]. Infinitely repeated games are simultaneous, non-zero sum games.

In these games, agents interact with each other repeatedly for an infinite number

of rounds. In each round of interaction, agents take action simultaneously: in each

round of interaction, every agent is unaware of the actions that other agents will

take. However, agents are aware of a bounded amount of information from actions

taken by all agents from earlier rounds of interactions. The governing principle

by which an agent decides on what action to play in each round is said to be an

agent’s strategy. Hence, agents choose their actions for any given round based on

10

its strategy. Agents receive a quantitative reward, called payoff, from each round

of interaction. The payoff of an agent from a game is computed by accumulating

the rewards from each round of accumulation using the discounted sum aggre-

gate function. The discounted sum of a sequence of rewards R = {r0, r1, . . . } with

discount factor d > 1 is given by DS(A,d) = r0 +
r1
d + r2

d2
+

For simplicity, we will refer to infinitely repeated games with bounded ratio-

nality as repeated games in the rest of this thesis.

The motivation for repeated games arises from real life interactions. As a con-

crete example, consider a competitive market place consisting of two firms that

produce an identical goods. Firms interact with each other by deciding on a price

for the goods. Actions for each firms are (1) to weed-out competition, or (2) to

mutually co-operate to co-exist in the market place. An example of a firm strategy

is to Tit-for-Tat i.e to respond by always replicating the other firm’s action from the

previous round. Note that in each round of an interaction, firms can refer to the

action of the other firm from the previous round only, hence agents decide on an

action based on a bounded amount on information from previous rounds.

2.1.2 Solution concepts

Rational behavior in games are studied as solution concepts [38, 51]. This thesis

discusses two solution concepts: Nash equilibria and best response strategy.

Best response strategy A strategy S for an agent is said to be the best response

to a fixed set of strategies taken by all other agents if the agent receives maximum

payoff with strategy S as compared to all other strategies of the agent.

The best response strategy is a very local notion of rationality, one that corre-

sponds to the strategy that maximizes a single agent’s rewards from a game.

Nash equilibria Nash equilibria is a global notion of rationality that corresponds

to strategies taken by all agents.

11

A tuple of strategies (S1, . . . ,Sk), Si corresponds to the strategy of the i-th agent,

is said to be in Nash equilibria if no agent receives a greater payoff from the game

by unilaterally changing its strategy.

2.2 Automata-theoretic concepts

This section provides definitions and notations for the finite-state machines used

in this thesis.

2.2.1 Finite automata

A finite automaton, denoted byA, is a tuple (S,Σ,δ,Init,F) where S is a finite set of

states, Init ⊆ S is a non-empty set of initial states, Σ is a finite alphabet, δ ⊆ S×Σ×S

is the transition relation, and F ⊆ S is a non-empty set of accepting states.

An automaton is called deterministic if for all states s, and all symbols a ∈ Σ,

|{s′ |(s,a, s′) ∈ δ}| ≤ 1. Otherwise, it is called non-deterministic.

Let Σ∗ be the set of finite words over Σ. For w = w0w1 . . .wn ∈ Σ
∗, a run ρ of w

in A is a sequence of transitions τ0τ1 . . . τn such that there is a sequence of states

sρ = s0s1 . . . sn+1 satisfying: (1) s0 = Init, and (2) τi = (si ,wi , si+1) for all i.

We say w has an accepting run in A if there exists a run ρ of w such that the last

state of sρ is a final state of A, i.e. sn+1 ∈ F . The automaton A accepts a word w if w

has an accepting run in A.

Regular languages are known to be closed under union, intersection, and com-

plementation over Σ
∗. Languages accepted by deterministic automata are called

regular languages.

2.2.2 Büchi automata

A Büchi automaton [62] is similar to traditional finite automata, except it operates

on infinite words. While automata on finite words accept a word by terminating at

an accepting state, a Büchi automaton accepts a word if it visits the set of accepting

12

states infinitely often while reading the word. Formally, Büchi automata are also

defined by (S,Σ,δ,Init,F).

Let Σω be the set of infinite words over Σ (similar notation is used for other

alphabets). For w = w0w1 · · · ∈ Σ
ω, a run ρ of w in A is a sequence of transitions

τ0τ1 . . . such that there is a sequence of states sρ = s0s1 . . . satisfying: (1) s0 = Init,

and (2) τi = (si ,wi , si+1) for all i. Note, each sequence in a Büchi automaton is

infinite.

Let inf (ρ) be the set of states that occur infinitely often in sρ. We say w has

an accepting run in A if there exists a run ρ of w such that inf (ρ) ∩ F , ∅. The

automaton A accepts a word w if w has an accepting run in A.

Büchi automata are also known to be closed under set-theoretic union, inter-

section, and complementation over Σ
ω. Languages accepted by these automata

are called ω-regular languages.

2.2.3 Weighted Büchi transducer

A weighted Büchi transducer is similar to a Büchi automaton, in that its inputs are

infinite words. However, on every accepting run, it produces an infinite word as

output, and receives an infinite stream of payoffs. These payoffs are aggregated into

an aggregate payoff.

Formally, a (weighted, Büchi) transducer is a tuple T = (S, Σ, Γ, δ, Init, F) where

S is a finite set of states, Σ is an input alphabet, Γ is an output alphabet, δ ⊆ S×Σ ×

Γ ×Q × S is a transition relation, Init ⊆ S is a set of initial state, F ⊆ S is the set of

accepting states, and fT is the aggregate function.

A transition (s,a,b,m,s′) in T is said to have input a, output b, and payoff m.

The transducer is deterministic if for all states s, inputs a, outputs b, |{(m,s′) :

(s,a,b,m,s′) ∈ δ for some s′}| ≤ 1. Otherwise, it is nondeterministic.

For a wordw =w0w1w2 · · · ∈ (Σ,Γ)
ω, a run ρ ofw in T is a sequence of transitions

τ0τ1τ2 . . . such that there is a (unique) sequence of states s0s1s2 . . . satisfying: (1)

13

s0 = Init, and (2) τi = (si ,wi ,yi ,pi , si+1) for all i. The definitions of accepting runs,

accepted words, and languages are as for Büchi automata. The sequences y0y1y2 . . .

and π = p0p1p2 . . . are known as the output sequence and the payoff sequence for ρ,

respectively.

Let d be a fixed rational number satisfying d > 1. The discounted sum of any

sequence A = a0a1a2 . . . of rationals is defined as DS(A,d) = Σ
∞
j=0(aj /d

j). The aggre-

gate payoff for the run ρ is the discounted sum DS(π,d). Discounted sum is used to

compute the payoff of agents in a repeated game.

Note Let A denote a finite state machine. We write w ∈ A to denote that w is a

word accepted by A, and ρ ∈ A to denote that ρ is an accepting run in A.

14

Chapter 3

Regular Repeated Games

This chapter introduces our model, regular repeated games, for infinitely repeated

games with bounded rationality. It is worthwhile to note that finite-state ma-

chine are one of the oldest models for repeated games with bounded rationality.

games [2, 5, 8, 10, 40, 48, 49, 54, 57]. Regular repeated games is also a finite state

machine basedmodel for repeated games. Section 3.1 expands on regular repeated

games in detail. In Section 3.1.1 we will note that regular repeated games are in-

deed an extension of the finite state based model proposed by Rubinstein in his

seminal work on analysis of repeated games [57]. This section will motivate the

need for our extension by proving that regular repeated games are strictly more

expressive that the Rubinstein model. Later, Section 3.1.2 defines two solution

concepts for repeated regular games: Nash equilibria and best response strategy.

Lastly, Section 3.1.3 provides a discussion on the size of regular repeated games.

The chapter concludes with its summary in Section 3.2.

3.1 Regular repeated games

A regular repeated game consist of a finite fixed finite number of agents, each

with a finite set of strategies given by weighted Büchi transducers. The actions of

an agent form the outputs of these transducers; the inputs correspond to tuples of

actions taken by other agents.

Formally, a regular repeated game G is given by a set of k agents, where the i-th

agent Pi consists of a finite set Action(i) of actions, and a finite set Strategy(i) of

strategies. A strategyM for Pi is a weighted Büchi transducer whose output alpha-

15

bet is Action(i), and whose input alphabet is the Cartesian product
�

j,iAction(j)

of action sets of other agents. Elements (a)−i of this input alphabet are known as

environment actions w.r.t agent Pi . The game G is deterministic if all strategies of all

agents are deterministic, and nondeterministic otherwise.

Intuitively, accepting runs of a strategy M offer an agent-level view of exe-

cutions of the game. Each transition denotes one round of a game. Specifically,

consider a transition (q, (a)−i ,ai ,p,q
′) that appears at the j-th position of an accept-

ing run ofM. This means that there is a possible execution of the game in which:

(i) the i-th agent is at state q immediately before the j-th round of the game; (ii) in

this round, the i-th agent and its environment synchronously perform the actions

ai and (a)−i , respectively; (iii) the concurrent action leads agent Pi to transition to

state q′ at the end of this round, and receive payoff p.

Recall that we use the discounted sum aggregate function. Intuitively, such a

discounted sum follows the standard game-theoretic assumption that the signifi-

cance of payoffs received in each round of interaction tapers with time.

Nondeterminism in strategies is used to capture the incompleteness of our

knowledge about the dynamics of the game. In nondeterministic strategies, a joint

action by an agent and its environment can cause the agent to transition one of

several distinct states, or receive one of several distinct payoffs. (Examples of each

kind of nondeterminism are demonstrated in Section 4.3.) Unlike in probabilis-

tic models of uncertain behavior, we do not have a probability distribution on the

transitions.

Strategy profiles and executions Now we define the semantics of interactions

between agents P1, . . . ,Pk that constitute a game G.

A strategy profile M of G is a tuple of strategies (M1, . . . ,Mk), where Mi ∈

Strategy(i) for each Pi . Intuitively, M captures a scenario in which Pi follows

the strategy Mi . A word of strategy profile M, denoted by w = (w1, . . . ,wk) ∈

16

(
�k

i=1Action(i))
ω , is such that for each agent Pi , wi = ((w1, . . .wi−1,wi+1, . . .wk),wi) ∈

Mi . We use w ∈ M to denote w is a word of M. Each w is assigned to payoff

sequences, P(w). Payoff sequence (p1, . . . ,pk) ∈ P(w) iff for each Pi , there exists an

accepting run of wi with payoff sequence pi inM
i . A run ρ of strategy profileM

is defined as the tuple (w,p) where w ∈ M and p ∈ P(w). We denote the payoff of

Pi along ρ i.e. pi by Pi(ρ). As earlier, we use ρ ∈M to denote that run ρ is present

inM.

The payoff for agent Pi on a run ρ is given by the discounted sum of the payoffs

received by agent Pi on the run ρ. Hence, for discount factor d > 1 the payoff

received by agent Pi on a run ρ is given by DS(Pi(ρ),d). The payoff for agent Pi for

a given word w is given by max{DS(Pi(ρ),d)|ρ is a run for word w}.

Each strategy profile can be represented by a Büchi automaton Execs(M), and

a payoff relation P between transitions of Execs(M) and Qk s.t. (w,p) ∈ M iff

w ∈ Execs(M) and p is a payoff sequence of w in Execs(M). The construction of

a strategy profile automata from its component strategies is shown below:

Strategy profile automata We construct a Büchi automaton Execs(M) for strat-

egy profile M = (M1, . . . ,Mk) and a payoff relation P over transitions in the au-

tomaton such word w ∈ Execs(M) has payoff sequence p iff (w,p) is a run inM.

Let [k] denote {1, . . . ,k}. SupposeMi = (Si ,Σi ,Γi ,δi ,Initi ,Fi ,di) for each i. Then

Execs(M) is the Büchi automaton (S,Γ,δ,Init,F) and P ⊆ δ× (Q)k is the payoff rela-

tion, where:

• S = S1 × · · · × Sk × [k]

• Γ =
�k

i=1Γi . Let, a = (a1, . . . ,ak), and a−i = (a1, . . . ,ai−1,ai+1, . . . ak).

• Init = Init1 × · · · × Initk × {1}

• F = F1 × S2 · · · × Sk × {1}

17

• Transition relation δ and the payoff relation P ⊆ δ × (Q)k are defined as fol-

lows:

– τ = ((s1, . . . , sk ,m),a, (t1, . . . , tk ,m)) ∈ δ iff sm < Fm and for all i ∈ [k], τi =

(si ,a−i ,ai ,pi , ti) ∈ δi .

All p = (p1, . . . ,pk) formed from such τi-s are contained in P(τ).

– τ = ((s1, . . . , sk ,m),a, (t1, . . . , tk , f (m))) ∈ δ iff sm ∈ Fm and for all i ∈ [k],

(si ,a−i ,ai ,pitj) ∈ δj , where f (m) =m+1 if m < k, and f (m) = 1 otherwise.

All p = (p1, . . . ,pk) formed from such τi-s are contained in P(τ).

The next theorem proves that the automata constructed above is indeed equiv-

alent to the corresponding strategy profile.

Theorem 3.1

Automaton Execs(M) and payoff relation P ⊆ δ × (Q)k is such that w ∈ Execs(M)

and p ∈ P(w) iff (w,p) is a run inM.

Proof 3.1 We prove the two directions of the implication separately.

First, we prove that w ∈ Execs(M) with p ∈ P(w) =⇒ (w,p) ∈M.

Let w be a word in Execs(M) with payoff sequence p. By looking at its transition

sequence we will reason that (w,p) ∈M.

Let its transition sequence be given by τ0τ1 . . . where each τi = ((si1, . . . , s
i
k ,mi),

a, (si+11 , . . . , si+1k ,mi)). Since this is an accepting run, it must be the case that final

states in the automaton are accepted infinitely often. Consider the state sequence

for w, (s01, . . . , s
0
k ,1)(s

1
1, . . . , s

1
k ,m1)(s

2
1, . . . , s

2
k ,m2) Since, the sequence is accepting,

(f i , . . . ,1) is visited infinitely often, where f i ∈ F1. But from construction of the

automaton, we know that if (f i
1 , . . . ,1) is visited in the i-th round, then then state

sequence in the next round is (si+11 , . . . ,2). The only way, it can return to a state

of the form (f i , . . . ,1) is by exiting states of the form (si0, . . . ,2), . . . , (s
i
0, . . . ,k) in that

order of m-s (m is the last component in each state). From transition relation we

18

know that an execution can exit state (si0, . . . ,m) only if sim ∈ Fm. Therefore to visit

(f i
0 , . . . ,1) infinitely often, it must also visit (si0, . . . ,m) infinitely often where sim ∈ Fm.

Therefore a state sequence is accepting iff for eachm ∈ [k] (s0, . . . , sk ,m) is visited

infinitely often where sm ∈ Fm.

Let w = (w1, . . .wk), and w−i = (w1, . . . ,wi−1,wi+1, . . .wk). Then from construction

we know that (w−i ,wi) has a run inMi which follows the state sequence s0i , s
1
i . . . ,

where s
j
k are as in the transition state sequence. Since from the above argument,

we know that f
j
i ∈ Fi is visited infinitely often, (w−i ,wi) is an accepting word in

Mi .

Furthermore, if p is a payoff sequence along w, then by accumulating payoffs

along the transition sequence, we get that p = (p1 . . . ,pk), where pi is a payoff se-

quence along s0i , s
1
i

This completes the proof of the first direction. Next, we prove the other direc-

tion: (w,p) ∈M =⇒ w ∈ Execs(M) with p ∈ P(w).

Let w = (w1, . . .wk), and w−i = (w1, . . . ,wi−1,wi+1, . . .wk). Also let, p = (p1, . . . ,pk).

Since (w,p) ∈ M, by definition of a run in a strategy profile, we know that for

each i, (w−i ,wi) ∈ M
i and pi is a payoff sequence of (w−i ,wi) the i-th agent inMi .

Let si = s0i s
1
i s

1
2 . . . denote the state sequence corresponding to (w−i ,wi) and payoff

sequence pi .

Construct the state tuple sequence s = (s01, . . . s
0
k)(s

1
1, . . . s

1
k)(s

2
1, . . . s

2
k) Let (s

i
1, . . . s

i
k)

be the first state where sii ∈ F1. Append all state tuples till the i-th state tuple with

1. Let j be the first index after i, where s
j
2 ∈ F2. Append all state tuples after i until

j (including j) with 2. After appending k to state sequences, we go back to ap-

pending 1, and so on. One can show that the resulting state sequence is accepted

by Execs(M). Furthermore, p ∈ P(w).

Example We illustrate the construction of a strategy profile from its component

strategies through an example. Recall that the Prisoner’s Dilemma [52] is a classi-

19

qstart

(D,C), (D, D)

Figure 3.1 : IPD:

Only Defect.

For payoff, see

Table 3.4

s1start s2

(C,C)

(C,D)

(D,C), (D,D)

Figure 3.2 : IPD: Grim

Trigger. For payoff, see

Table 3.4

t1start t2
(D,C), (4,0)

(D,D), (1,1)

Figure 3.3 : Strategy profile when

P1 plays Only Defect, and P2 plays

Grim Trigger

Note: Transitions of strategies are labeled by (a,b), where a is output, b is input.

We omit agent payoff on transitions for clarity of figure.

cal synchronous game between two agents; each can either defect (D) or co-operate

(C) with the other player. The payoff of each prisoner received from this game are

given in Table 3.4. The infinitely repeated variant of PD is called the Iterated Pris-

oner’s Dilemma (IPD) [38].

Figure 3.1 and Figure 3.2 depict two strategies for agents in IPD. Figure 3.1

depicts the strategy in which the agent always defects. Figure 3.2 depicts the Grim

Trigger Strategy, in which the agent co-operates until the environment defects, fol-

lowing which the agent always defects. Figure 3.3 illustrates the strategy profile

generated when P1 performs only defect strategy, and P2 performs the Grim Trig-

ger strategy. In the figure transitions are labeled with a, p: action profile and payoff

tuple along the transition respectively.

3.1.1 Comparison with the Rubinstein model

In the Rubinstein model, every agent strategy is given by a weighted, deterministic

Moore machine. On the other hand, strategies in regular repeated games are given

by weighted, non-deterministic transducers. While, every Rubinstein strategy can

20

Cooperate (C) Defect (D)

Cooperate (C) 3 0

Defect (D) 4 1

Figure 3.4 : Payoff table for Iterated

Prisoner’s Dilemma Strategies. Row

Agent: Agent, Column Agent: Envi-

ronment

q0start

q1

q2

(C,C)

(C,D)

(C,D)

(C,C)

(C,D)

(D,D)
(D,C)

Figure 3.5 : TF2T(Tit-for-Tat-with-

Forgiveness)

trivially be encoded as a regular repeated game strategy, the reverse is not true.

This point is illustrated through an example and a formal proof in this section.

Consider the tit-for-tat-with-forgiveness strategy for the IPD illustrated in Fig-

ure 3.5. This strategy is a spin on the tit-for-tat strategy in which an agent may

or may not perform D if the other agent takes action D once, but will certainly

respond with aD if the other agent performsD twice. In Figure 3.5, q1 denotes the

state from which the agent forgives the other agent for performing D once, while

state q2 is the state at which the agent retaliates with D. Therefore, from the start

state q0 when the other agent performsD for the first time, transition on (C,D) can

either lead to state q1 or q2 depending on whether the agent forgives or not. Hence

non-determinism is inherently present in this strategy.

Since the Rubinstein model does not permit non-determinism, TF2T as illus-

trated in Figure 3.5 cannot be encoded in the Rubinstein model, but can be en-

coded in regular repeated games. This motivates the need of a model with non-

determinism. Furthermore, we can prove that regular repeated games permits a

strictly richer class of strategies. For this it is sufficient to prove that not every non-

deterministic strategy can be encoded as a deterministic strategy (see Lemma 3.1).

Lemma 3.1

Not all non-deterministic strategies can be determinized.

21

Proof 3.2 (Proof sketch) Consider a non-deterministic game. In this game, a non-

deterministic strategy for the agent can also be viewed as a non-deterministic dis-

counted sum automaton for infinite lengthwords over the alphabet of
�k

i=1Action(i).

Suppose it were possible to determinize a discounted sum automaton over infinite

length words, then we could also determinize discounted sum automaton over fi-

nite length words. But determinization of all discounted sum automata over finite

words is not possible, as proved in a result by Böker and Henzinger [13]. This

proves that it is not possible to determinize every non-deterministic strategy.

Hence we have proved that regular repeated games permit a strictly larger class

of strategies as compared to the Rubinstein model. Hence, it is justified to say the

regular repeated games comprise of a strictly richer class of repeated games as

compared to the Rubinstein model.

Another interesting point of difference between the Rubinstein model and reg-

ular repeated games arises in the structure of strategy profiles in them. In the

Rubinstein model strategy profiles can have at most a single run, while strategy

profiles in regular repeated games may have more than one run. As a result, in

regular repeated games agents may receive multiple rewards from a single strat-

egy profile. Hence, we are required to re-define the various solution concepts in

regular repeated games (See Section 3.1.2).

3.1.2 Solution concepts

In this section, we define the solution concepts of Nash equilibria and best re-

sponse strategy for repeated regular games.

But first, we introduce some necessary notation. For each agent Pi and strategy

M
′
in Strategy(i), we define a strategy profileM[i :=M

′
] obtained by starting with

M, and then switching the strategy of agent Pi to M
′
. Precisely, M[i := M

′
] is

defined as the tuple (M1, . . . ,Mi−1,M
′
,Mi+1, . . . ,Mk).

22

Nash equilibria We define Nash equilibria for repeated regular games.

Definition 3.1 A strategy profile M is a Nash equilibrium if for each agent Pi , for

each strategyMi
∗ ∈ Strategy(i), there exists a run ρ ∈M such that for all other runs

ρ′ ∈M[i :=Mi
∗], P

i(ρ) ≥ Pi(ρ′).

A run ρ ∈ M is a non-Nash run if there exists another strategy profile M
′
s.t.

the strategy profiles differ in strategy of exactly one agent, say Pi , and there exists

a run ρ′ ∈M
′
, s.t. Pi(ρ) < Pi(ρ′). A run is a Nash run otherwise. In cases when ρ is a

non-Nash run, we call run ρ′ the witness of ρs non-Nashness. A strategy profile is

called Nash if it is in Nash equilibria, and non-Nash otherwise. A strategy profile

M∗ that demonstrates profileM non-Nash is called a witness ofM.

One can show that strategy profiles in deterministic games have a unique run.

Therefore, in deterministic games, the above definition of Nash equilibria coin-

cides with the standard definition of Nash equilibrium. The definition is less stan-

dard in nondeterministic games, where a strategy profile can have multiple (in fact

an unbounded number of) runs. Here, a strategy profile is a Nash equilibrium if

it has at least one Nash run. Intuitively, this is a conservative definition, guided

by the goal of not ruling out rational behaviors. Since our knowledge of runs is

incomplete, the way to achieve this goal is to call a strategy profile Nash so long as

the agents have some way of realizing a Nash run by following it.

Best response strategy Wedefine best response strategy for regular repeated games.

Definition 3.2 A strategyMi
∗ is said to be a best response to the environment action

w.r.t. Pi , (M
1, . . . ,Mi−1,Mi+1, . . . ,Mk), if for all other strategies Mi ∈ Strategy(i),

there exists a run ρ ∈ (M1, . . . ,Mi−1,Mi
∗,M

i+1, . . . ,Mk) s.t. for all runs ρ′ ∈ (M1,. . . ,

Mi−1,Mi ,Mi+1, . . . ,Mk), Pi(ρ) ≥ Pi(ρ′).

As earlier, this definition of best response strategies coincides with the standard

23

definition in deterministic games. The reason behind choosing this conservative

definition is same as that in the case of Nash equilibria.

Relationship between Nash equilibria and Best response strategy We make

the following interesting observation between Nash equilibria and Best response

strategy in repeated regular games.

Lemma 3.2

Let G be a 2-agent game. Suppose P2 receives a constant payoff in each strategy.

Then, (M1,M2) is in Nash equilibria in G iffM1 is a best response to the environ-

ment w.r.t P1.

Proof 3.3 (Proof Sketch) We provide an intuitive understanding behind the claim.

The formal proof directly falls from this idea.

We already know that the first agent receives maximum payoff in the Nash

equilibria strategy profiles. Hence if (S1,S2) is in Nash equilibria, then S1 is also a

best response strategy w.r.t. S2 for the first agent.

The second agent does not gain or loose payoff by unilaterally changing its

strategy profile since it gets constant payoff on all. Therefore, only the first agent

can receive greater or lower payoff from the game. Next, if S1 is a best response

strategy to S2 for the first agent, since the second agent is agnostic to the strategy

it plays, (S1,S2) is also in Nash equilibrium.

3.1.3 Size of repeated regular games

Definition 3.1 and Definition 3.2 are both defined for/on strategy profiles. There-

fore, in all analysis that follows, we consider strategy profiles, not strategies, to be

the fundamental unit for analysis. Hence we denote the size of a game w.r.t. the

number and size of strategy profiles in the game.

Let SP denote the set of all strategy profiles in a given game G. We define

|G| = ΣS∈SP |S |, where strategy profiles are represented in their automaton form.

24

From the construction of strategy profile automata(See Section 3.1), we observe

that the size of a strategy profile is proportional to the product of the size of each

component strategy. Let Si ∈ Strategy(i) denote the largest strategy for Pi . Then

the size of each strategy profile S, |S |, is given by O(Πk
i=1|Si |). Also the number of

strategy profiles in game |G| is given by O(Πk
i=1|Strategy(i)|) . Together this implies

|G| = ΣS∈SP |S | =⇒ |G| = O(Π
k
i=1|Strategy(i)|) · O(Π

k
i=1|Si |).

3.2 Summary

In summary, this chapter formally defines a regular repeated game, a finite state

machine based model for games. Here every agent has a finite number of strate-

gies, which are given by finite-state, weighted, non-deterministic, transducers,

where the inputs are actions taken by other agents, and outputs are the agent’s

actions. Weights on transitions denote the reward received by the agent. Agent

strategies synchronize on their actions in a game, and the reward on an executions

is given by the discounted sum of rewards on transitions.

The chapter defines Nash equilibria (best response strategies) in regular re-

peated games conservatively: if the strategy profile (strategy) consists of at least

one run that satisfies the criteria of the solution concept for deterministic games,

the strategy profile (strategy), then the strategy profile (strategy) is a Nash equi-

librium (best response strategy). Our motivation behind this choice of definition

arises from our goal of analyzing properties of rational behaviors (solution con-

cepts). Hence, we do not to rule out any possible rational behavior. These defini-

tions can be altered depending on the motivation.

Lastly, the chapter discusses the parameter for the size of a game. We compute

the size of a game in terms of the size of all strategy profiles in it.

25

Chapter 4

Computing Equilibria

This chapter presents ComputeNash: an algorithm to compute all Nash equilibria

in a repeated regular game.

Section 4.1 gives an overview of relevant prior work with respect to equilib-

ria computation in repeated games. Our algorithm ComputeNash is discussed

in detail in Section 4.2. The algorithm is described in Section 4.2.1, and proofs

of its correctness and complexity are presented in Section 4.2.2. We also discuss

an adaption of ComputeNash to compute best response strategies for an agent in

a regular repeated game. A detailed discussion on the methodology and results

from experiments on a prototype implementation of ComputeNash is presented

in Section 4.3. We summarize the chapter in Section 4.4.

4.1 Prior work

There is a large literature on repeated games, and infinitely repeated games with

discounted payoffs as the model for aggregation of payoff [38]. Equilibrium com-

putation in repeated games has also been studied. Of existing work on this topic,

one thread focuses on computing the set of equilibrium payoffs in repeated games [1,

26]. The computation of strategy profiles that form equilibria is not considered.

Also, the algorithms here are fixpoint computations over reals, and do not come

with complexity guarantees.

A different thread of prior work studies the computation of a single equilibrium

strategy in repeated games [4, 35, 37]. There are also a few approaches to comput-

ing representations of approximations to the set of equilibria [11, 17]. The tech-

26

niques here involve iterative computations in continuous spaces, and their com-

plexity increases with precision. In contrast, we give algorithms that compute sets

of equilibrium strategies exactly and have crisp complexity bounds. The price that

we pay is in expressiveness — rationality in our model is bounded.

None of the works mentioned so far consider finite-state machine basedmodels

for repeated games. ComputeNash considers the problem of equilibria computa-

tion on a finite-state machine based model for repeated games, namely regular

repeated games.

The literature on equilibria of finite state machine games has primarily fo-

cused on two questions: properties of equilibria under different kinds of struc-

tural assumptions on strategy machines [2, 8, 10, 49, 53, 54, 57], and the ability

of bounded rationality to support cooperative outcomes [48]. In contrast, the com-

putation of equilibria has not received much attention in this setting. Our high-

level contribution is to show that automata-theoretic decision procedures offer a

promising set of tools for this problem.

While finite state machine based models [57] are among the oldest models for

games with bounded rationality [59], Turing machine based models for strategies

have also been considered. In some of these approaches, strategy machines have

restrictions on time, space usage or number of states [28, 41, 64]; in a recent ap-

proach of this sort, agents have to pay an explicit cost for computation while exe-

cuting their strategies [34]. We are not aware of any work on equilibrium compu-

tation in any of these contexts.

There is an emerging literature, motivated by applications in formal methods,

on equilibria in games given as ω-automata [15, 16, 20]. Many of these approaches

focus on turn-based and/or zero-sum games; most of them aim to compute a

single equilibrium. We look at the problem of equilibria computation on regu-

lar repeated games, which are a form of simultaneous and non-zero sum games.

Another paper by Klimoš, Larsen, Štefaňák and Thaarup [36], which computes

27

an automata representation of Nash equilibria on deterministic concurrent graph

games. Graph games are again different from regular repeated games.

4.2 Computing Nash equilibria

WepresentComputeNash, an algorithm to compute all Nash equilibria in a regular

repeated game G. Before delving into the details of ComputeNash, we explain

the key ideas of the algorithm. This is followed by a theoretical analysis of the

correctness and complexity of the algorithm.

4.2.1 ComputeNash algorithm description

The crux of the algorithm ComputeNash is to determine whether a given strategy

profile is a Nash equilibrium or not. This is based on the following key ideas:

1. To determine whether a strategy profile M is not in Nash equilibria, we

search for a witness by iterating over all possible unilaterally deviated strat-

egy profiles fromM. (Algorithm 1).

2. M∗ is a witness ofM, say they differ on Pi only, iff each run ρ ∈M there is a

run ρ′ ∈M∗ s.t. P
i(ρ) < Pi(ρ′) (Algorithm 2).

3. Finally, to compare payoff of two runs, ρ and ρ′ we construct a finite state ω-

regular comparator automaton for the discounted sum aggregate function.

We discuss the details of this construction in detail in Section 5.2. For now, it

is sufficient to know that the discounted sum comparator for discount factor

d > 1 is a Büchi automaton, denoted by A≻DS(d)
, that accepts a pair of infinite

length integer sequence (A,B) iff DS(A,d) <DS(B,d).

In this section, we abuse notation and useM to denote both the strategy profile

and its corresponding Büchi automaton. In the following, we explain steps of the

algorithm with a running example. For the running example we take S to be the

strategy profile in Figure 3.3, and T to be as in Figure 4.1.

28

ALGORITHM 1: ComputeNash(d,Strategy(1),Strategy(2), . . . ,Strategy(k))

Input: Discount factor d > 1, set of strategies Strategy(i) for each agent Pi

Output: Set of all Nash equilibria from the game generated by all agents Pi

1 γ ←MaxPayoffValue(Strategy(1),Strategy(2), . . . ,Strategy(k))

2 A≻DS(d)
← ComparatorAut(γ,d)

3 Nash← {StrategyProfile(M1,M2, . . . ,Mn)|M1 ∈ Strategy(1),M2 ∈ Strategy(2), . . . ,Mk ∈

Strategy(k)}

4 forall StrategyProfile(M1,M2, . . . ,Mn) ∈Nash do

5 forall i ∈ {1,2, . . . k} do

6 forallMi
∗ ∈ Strategy(i) do

7 isWitness←Witness(i,StrategyProfile(M1,M2, . . . ,Mk),

StrategyProfile(M1,. . . ,Mi−1,Mi
∗,M

i+1, . . . ,Mk))

8 if isWitness = T rue then

9 Remove StrategyProfile(M1,M2, . . . ,Mk) from Nash

10 return Nash

Details of ComputeNash The pseudo code for ComputeNash is presented in Al-

gorithm 1. ComputeNash accepts as inputs a set of strategies, Strategy(i), for each

agent Pi and a rational valued discount factor d > 1. Recall that these parameters,

the set of strategies for all agents, and the discount factor d > 1, completely specify

a game. The output is the set of all Nash equilibria Nash in the game G described

by interaction of the set of agents of the input game.

As sketched earlier, the algorithm ComputeNash checks for the existence of a

witness for each strategy profile. This involves a mechanism to compare the payoff,

computed as the discounted sum of the payoff sequence with discount factor d >

1, of two number sequences. We construct the ω-regular comparator automaton

for the discounted sum aggregate function with maximal bound γ equal to the

maximum payoff in the game G (obtained in Line 1), and discount factor d > 1

29

(Line 2). The details of the construction of the ω-regular comparator automaton

for discount factor d > 1 is given in Section 5.2. For now it is sufficient to know

that this automaton, denoted by A≻DS(d)
, accepts pair of number sequences (A,B)

iff f (A) < f (B). We assume that sequences A and B are bounded by γ .

We initializeNash to the set of all strategy profiles in G (Line 3). StrategyProfile

returns the Büchi automaton representation and the payoff relation for the strategy

profile. Algorithm ComputeNash iterates over all strategy profiles present in Nash

(Line 4), and removes a strategy profileM from Nash if there exists a witness toM

(Line 7- 9). This way, at termination Nash consists of only those strategy profiles

for which no witness exists. In other words, on termination of ComputeNash, Nash

consists of the set of all Nash equilibria in G.

The crux of ComputeNash lies in the subroutine Witness (Algorithm 2), which

determines if a given strategy profile is a witness of another given strategy pro-

file. Procedure Witness accepts as inputs an agent identity number i, and and two

strategy profiles M1 and M2 that are unilaterally deviated from each other. In

fact,M1 andM1 are different in the strategy of agent Pi only (Algorithm 1, Line 5-

7). Procedure Witness returns True ifM2 is a witness ofM1, and False otherwise.

Details of Witness are given below; its pseudo code is given in Algorithm 2.

Details of Witness Different algorithms for Witness under deterministic games

and non-deterministic games are presented (Algorithm 2, Deterministic games:

Line 1- 8; Non-deterministic games: Line 9- 18). However, the underlying ideas

are similar. The key ideas of Witness are:

• Compare payoffs of run(s) on one strategy profile with run(s) in the other

strategy profile. Suppose, the strategy profiles differ in the strategy of agent

Pi only, then comparison of the payoffs of agent Pi are performed. The dis-

counted sum comparator automaton is used for this comparison.

• Strategy profile M2 is a witness of M1 (assuming the profiles differ in the

30

strategy of agent Pi only) if for every run in M1, there exists a run in M2

along which agent Pi receives a strictly greater payoff.

The difference between the algorithm ofWitness for deterministic games and

non-deterministic games arises in ensuring this, since there is at most one

run in strategy profiles for deterministic games, but there may be infinitely

many such runs in strategy profiles for non-deterministic games.

Details of Witness for each case are described in detail below:

Witness for deterministic games To determine whether a strategy profile is non-

Nash, we reason at the level of runs in the strategy profiles. Note that in determin-

istic games, each strategy profile can have at most a single run.

Let the inputs to Witness be the agent identity index i, and strategy profiles

S and T . Recall that strategy profiles S and T differ in the strategy of agent Pi

only (Algorithm 1, Line 5- 7). The objective is to determine if T is a witness of

S. First, automaton S and T are transformed to automaton Ŝ and T̂ respectively

with the procedure AugmentWt (Line 2- 3). Procedure AugmentWt augments the

payoff-tuples on transitions to the corresponding transition alphabet. Concretely,

each transition of the form τ : (s,a, t) and with payoff tuple p ∈ P(τ) is transformed

to τ̂ : (s, (a,p), t) for every payoff tuple p. This transformation leads to a one-to-

one correspondence between accepting runs in the strategy profile automaton and

the augmented strategy profile automaton. Furthermore, this transformation ensures

that an accepting run in the strategy profile automaton is non-Nash iff its corre-

sponding augmented run is non-Nash in the augmented strategy profile automa-

ton.

The next step determines if accepting run ρ′ = (w′,P(w′)) in T̂ is witness of

accepting run ρ = (w,P(w)) in Ŝ . Note that since every strategy profile in deter-

ministic games has a unique accepting run, this is the same as determining if T̂ is

a witness of Ŝ (Line 4-Line 8). The first step here takes the product of Ŝ with T̂

31

q1start

(C,C), (2,2)

Figure 4.1 :

Strategy Profile

T

t1start t2
((D,C), l1, (4,0))

((D,D), l2, (1,1))

Figure 4.2 : Ŝ =

AugmentWtAndLabel(S)

q1start

((C,C), t1(2,2))

Figure 4.3 : T̂ =

AugmentWtAndLabel(T)

to obtain Âprod (Line 4). Note that Âprod accepts a single run only. More specif-

ically, Âprod accepts the run (ρ,ρ′) only. Next, we intersect the discounted sum

comparator automaton A≻DS(d)
with Âprod over the i-th component of payoff-tuple

sequences in Âprod (Line 5). We denote this intersection by ∩∗i in the pseudo code

Intuitively, the payoffs, computed as the discounted sum with discount factor d,

received by agent Pi along ρ and ρ′ are compared in this step. More concretely,

Âprod ∩∗i A≻DS(d)
accepts (ρ,ρ′) iff Pi(ρ) < Pi(ρ′). In other words, Âprod ∩∗i A≻DS(d)

ac-

cepts (ρ,ρ′) iff run ρ′ is a witness of run ρ. Recall that Âprod accepts a single run

which is (ρ,ρ′). Hence, Âprod∩∗iA≻DS(d)
is non-empty iff ρ is a witness of ρ′. In other

words, Âprod ∩∗i A≻DS(d)
is non-empty iff T̂ is a witness of Ŝ. Lines 5- 8 ensure that

Witness returns True if T̂ is witness of Ŝ , and False otherwise. The transformation

performed by AugmentWt in Line 2- 3 ensures that Witness returns True if T is a

witness of S, and returns False otherwise.

Witness for non-deterministic games Recall, it is necessary to reason at the level

of runs in the strategy profiles to determine whether a strategy profile is non-

Nash. Unlike in deterministic games, where all strategy profiles accept a at one

run, strategy profiles in non-deterministic games may accept more than one run.

Therefore, to reason at the level of runs in strategy profiles in non-deterministic

games, we disambiguate between the different runs in a strategy profile. To this

32

end, we assign a unique label to each transition in the strategy profile automaton

. Procedure AugmentWtAndLabel is similar to procedure AugmentWt, except that

AugmentWtAndLabel also augments the unique label for each transition in ad-

dition to the payoff-tuples to every transition. Hence, AugmentWtAndLabel trans-

forms strategy profile automaton S and T into augmented strategy profile automaton

Ŝ and T̂ respectively, by converting each transition τ : (s1,a, s2) to τ̂ : (s1, â, s2) for

â = (a, label(τ),p) where label(τ) is the unique label assigned to τ, and p ∈ P(τ) for

every p. (Line 10- 11). The result employing AugmentWtAndLabel to the running

examples S (Figure 3.3) and T (Figure 4.1) is shown in Figure 4.2 and Figure 4.3

respectively. There is a one-to-one correspondence between accepting runs in S

and T and in Ŝ and T̂ respectively. This transformation ensures that an accepting

run is non-Nash in S or T iff it is non-Nash in Ŝ or T̂ .

As in the deterministic case, the next step is to determine if each run in Ŝ has

a witness in T̂ . For this, as earlier, the product automaton Âprod of Ŝ and T̂ is

constructed (Line 12, Figure 4.4), and the product automaton Âprod is intersected

with the discounted sum comparator automatonA≻DS(d)
over the i-th component of

the payoff-tuples. The automaton representing this intersection is named Witness

(Line 13). For the running example, Witness automaton is constructed w.r.t. the

second agent, and with discount factor d = 2 (Figure 4.5). Let ρ and ρ′ be runs in Ŝ

and T̂ respectively. Then ρ and ρ′ are of the form (w,p) for p ∈ P
Ŝ
(w), and (w′,p′)

for p′ ∈ P
T̂
(w′) respectively. As in the case of deterministic games, Witness accepts

(ρ,ρ′) iff DS(Pi(p),d) <DS(Pi(p′),d). Hence,Witness accepts (ρ,ρ′) iff ρ′ is a witness

of ρ, hence ρ is a non-Nash run.

Unlike in deterministic games, it it not sufficient to check if any single run is

non-Nash in a strategy profile to prove that the profile is non-Nash. It is necessary

to prove that every run in the strategy profile is non-Nash. Hence, for Ŝ to be

non-Nash, each of its accepting runs should have a witness. For this, we collect

all non-Nash accepting runs of Ŝ in Nash by taking the projection of Witness along

33

t1start t2
(â, ĉ)

(b̂, ĉ)

Figure 4.4 : Âprod = Ŝ×T̂

t1start t2
(â, ĉ)

(b̂, ĉ)

Figure 4.5 : Witness =

Âprod ∩∗2A≻DS(2)

t1start t2
â

b̂

Figure 4.6 : Nash

â = ((D,C), l1, (4,0)), b̂ = ((D,D), l2, (1,1)), ĉ = ((C,C), t1(2,2))

the first component (Line 14, Figure 4.6). ProjectFirst converts each transition

(s1, (a,b), s2) to (s1,a, s2).

Note that, Witness will be equal to Ŝ iff each accepting run in Ŝ has a witness

in T̂ . In other words, Witness will be equal to Ŝ iff T̂ is a witness of Ŝ . Therefore,

Lines 15- 18 ensure that Witness returns True if T̂ is a witness of Ŝ, and False oth-

erwise. In the running example, Ŝ = Nash and therefore, the subroutine Witness

returns True.

4.2.2 Analysis of ComputeNash

In this section, we analyze the correctness andworst-case complexity of ComputeNash.

Theorem 4.1

ComputeNash returns the set of all Nash equilibria in G.

Proof 4.1 The correctness of ComputeNash hinges on the correctness of Witness.

The outer skeletal of ComputeNash ensures that every non-Nash strategy profile is

removed from the set Nash. ComputeNash relies on Witness for detecting in w.r.t.

a given agent Pi , strategy profile T is a witness of strategy profile S.

The correctness has been sketched in the paper. There are two crucial steps in

the proof. First, Âprod ∩∗i A≻DS(d)
accepts run (ρ,ρ′) iff ρ′ is a witness of ρ. Sec-

ond, non-emptiness check in case of deterministic games. Third, for the non-

34

deterministic case, Nash = Ŝ is a valid ultimate test. We expand on the above

two point here.

For the first, this is immediate from the correctness of A≻DS(d)
(See Chapter 5).

Note that from our construction in the paper, A≻DS(d)
accepts (Pi(ρ), Pi(ρ)′) iff

f (Pi(ρ)) < f (Pi(ρ′)) iff Pi(ρ) < Pi(ρ′). Hence, (ρ,ρ′) ∈ Âprod ∩∗i A≻DS(d)
iff ρ′ is a

witness of ρ.

We present the correctness of the procedure for non-emptiness check inWitness

for deterministic games.

Uniqueness of runs in deterministic games ensures that if (ρ,ρ′) ∈ Âprod ∩∗i

A≻DS(d)
then all runs in strategy profile S are non-Nash. Therefore, S cannot be

in Nash equilibria. Hence, S is non-Nash if Âprod ∩∗iA≻DS(d)
, ∅. Therefore, Witness

returns True in this case.

Witness returns False if T is not a witness of S.

Note that since in ComputeNash we iterate over all possible unilaterally de-

viated strategy profiles, if there exists a witness, then ComputeNash and Witness

will be able to find it. Non-existence of any witness proves Nash-ness of S.

We present the correctness of the procedure for equivalence check in Witness

for non-deterministic games.

We know that (ρ,ρ′) ∈ Witness iff ρ′ is a witness of ρ. In other words, (ρ,ρ′) ∈

Witness iff ρ is a non-Nash run in Ŝ . Therefore, this ensures that ρ ∈ Ŝ ∈ Nash iff

ρ is non-Nash. From construction, it is clear that Nash ⊆ Ŝ . If every ρ in Ŝ, is also

present in Nash, then Ŝ = Nash. Furthermore, if every ρ in Ŝ , is also present in

Nash then no ρ in Ŝ is in Nash. Therefore, this means Ŝ = Nash iff no ρ in Ŝ is a

Nash run. Therefore, Ŝ cannot be in Nash equilibria, and T̂ is a witness of Ŝ.

Therefore, if ever Ŝ = Nash, Witness returns True since T is a witness of S.

Otherwise, Witness returns False.

Lastly, if there exists a witness to S, ComputeNash and Witness will certainly

find it, since in ComputeNash we iterate over all unilaterally deviated strategy

35

profiles from S.

Lemma 4.1

An upper bound on the complexity ofWitness in deterministic games is O(|S | · |T | ·

|A≻DS(d)
|)where S and T are the input strategy profiles andA≻DS(d)

is the discounted-

sum comparator automata with discount factor d > 1.

Proof 4.2 In the deterministic case, Witness effectively reduces to checking for

non-emptiness of the Büchi automaton Âprod∩∗iA≻DS(d)
. We know that non-emptiness

checking is linear in the size of the automaton, therefore complexity of Witness is

of the order of O(|Âprod ∩∗iA≻DS(d)
|) =⇒ O(|Âprod | · |A≻DS(d)

|) =⇒ O(|Ŝ | · |T̂ | · |A≻DS(d)
|).

AugmentWt does not change the size of the strategy profiles, therefore Witness is

of the order O(|Âprod | · |A≻DS(d)
|) =⇒ O(|S | · |T | · |A≻DS(d)

|) where S and T are the two

input strategy profile automata.

Therefore, complexity of Witness in deterministic games is O(|S | · |T | · |A≻DS(d)
|)

where S and T are the input strategy profiles and A≻DS(d)
is the constantω-regular

comparator automata for f .

Lemma 4.2

An upper bound on the complexity ofWitness in non-deterministic games isO(|S |·

2
(|S |·|T |·|A≻DS(d)

)|
) where S and T are the input strategy profiles and A≻DS(d)

is the

discounted-sum comparator automata with discount factor d > 1.

Proof 4.3 Given input strategy profiles S and T , we want to determine if T is

a witness of S. In the first few steps (Line 10- 13), we are constructing an au-

tomaton Nash. The complexity of constructing witness is O(|Nash|) = O(|Witness|)

since ProjectFirst does not change the size of the automaton. O(Witness) = |Âprod | ·

|A≻DS(d)
| =⇒ O(Nash) = |Ŝ | · |T̂ | · |A≻DS(d)

|. Since AugmentWtAndLabel does not

change the size of the automaton, O(Nash) = |S | · |T | · |A≻DS(d)
|.

Line 15 is where we check for equivalence of two automaton, Nash and Ŝ . Here

Ŝ is deterministic butNash is not. So, in the worst case, this step takesO(2|Nash| ·|Ŝ |).

36

Therefore, Witness is of the order of O(2|Nash| · |S |) where O(Nash) = |S | · |T | ·

|A≻DS(d)
|.

Therefore, complexity ofWitness in non-deterministic games isO(|S |·2
(|S |·|T |·|A≻DS(d)

)|
)

where S and T are the input strategy profiles when we are checking if T a the wit-

ness of S and A≻DS(d)
is the constant ω-regular comparator automaton for f .

Theorem 4.2

Time complexity of ComputeNash for deterministic game G is given by O(|A≻DS(d)
| ·

|G|2), where A≻DS(d)
is the discounted sum comparator with discount factor d > 1.

Theorem 4.3

Time complexity of ComputeNash for non-deterministic game G is given by O(|G| ·

(2
|A≻DS(d)

|·|G|3
)), where A≻DS(d)

is the discounted sum comparator with discount fac-

tor d > 1.

We combine the proofs of Theorem 4.2 and Theorem 4.3 below.

Proof 4.4 For each strategy profile S, to find its witness we need to compare against

all unilaterally deviated potential strategy profiles. There are as many potential

strategy profiles as there are strategies in the game (each profile generated by

changing one strategy)

Let S be the profile for which we want to check for witness. Let T = {T1, . . . Tq}

be the multi-set of all strategies in the game. We take the multiset since the same

strategy may appear in different agents. Let S[Tk] denote the strategy profile in

which one component of S is changed to Tk . Then |S[Tk]| = O(|S ||Tk |).

In case of deterministic games, checking witness against all potential profiles is

ΣTi∈TWitness(S, (S[Ti])) = ΣTi∈T |S | · |A≻DS(d)
| · |S[Ti]| = ΣTi∈T |S |

2 · |A≻DS(d)
| · |Ti |. There-

fore for a fixed S, it takes |S |2 · |A≻DS(d)
| ·Σi∈Ti |Ti | to search for a witness. Let us call

this Td(S).

In the non-deterministic case, checking for a witness of S takes time of the

order |S | ·ΣTi∈T2
|S |2·|A≻DS(d)

|·|Ti |. Let us call this Tn(S).

37

Let SP denote the set of all strategy profiles.

Therefore, complexity of this for all strategy profiles in deterministic games is

Cd = ΣS∈SPTd(S) = (ΣTi∈T |Ti |·|A≻DS(d)
|)·(ΣS∈SP |SP |) = |A≻DS(d)

|·(ΣTi∈T |Ti |·)·(ΣS∈SP |SP |).

In the non-deterministic case, checking for witness in all strategy profiles is

given byCnΣS∈SPTn(S) ≤ (ΣS∈SP |S |)·(ΣS∈SP (ΣTi∈T2
|S |2·|A≻DS(d)

|·|Ti |)) ≤ (ΣS∈SP |S |)· (ΣS∈SP

(2
|S |2·|A≻DS(d)

|·ΣTi∈T
|Ti |))≤ (ΣS∈SP |S |) · (2

(ΣS∈SP (|S |
2)·|A≻DS(d)

|·ΣTi∈T
|Ti |)).

Now, ΣTi∈T |Ti | ≤ ΣS∈SP |S |. Therefore, Cd ≤ |A≻DS(d)
| · (ΣS∈SP |SP |)

2. And Cn ≤

(ΣS∈SP |S |)·(2
(ΣS∈SP (|S |

2)·|A≻DS(d)
|·ΣS∈SP |S |)) ≤ (ΣS∈SP |S |)·(2

|A≻DS(d)
|·(ΣS∈SP |S |)

3

)) since Σn
ii
a2i ≤

(Σn
i=1an)

2.

Since |G| = ΣS∈SP |S |,

Complexity of ComputeNash in det. games = O(|A≻DS(d)
| · |G|2)

Complexity of ComputeNash in non-det. games = O(|G| · (2
|A≻DS(d)

|·|G|3

))

Note The exponential complexity in non-deterministic games arises due to a

Büchi equivalence testing in Line 15 of Algorithm 2. Fortunately, there has been

significant progress on tools for Büchi automaton equivalence in recent years [63].

The implementations of our algorithm leverages some of these tools.

4.2.3 Best response strategy

The algorithm for ComputeNash can be adopted to compute all best response

strategies for agent Pi in a given game. For this we modify the input game G into

Ĝ where the payoff on every transition of every strategy for all agents other than

agent Pi is assigned to 0. Now, the strategies of Pi in strategy profiles returned

from running ComputeNash on Ĝ will exactly be all the best response strategies

for agent Pi in game G.

The correctness ComputeNash and Lemma 3.2 ensure that the resultant is in-

deed the set of all best response strategy for Pi .

38

The worst case complexity of this algorithm is also the same as that for ComputeNash

in the deterministic and non-deterministic case.

4.3 Experimental results

To demonstrate the practical utility of ComputeNash, we implemented a proto-

type of ComputeNash in Python. We employed the existing tools, GOAL [60]

and RABIT−Reduce [61], for operations over Büchi automata. We implemented

ComputeNash for both deterministic and non-deterministic games. In our imple-

mentation, we optimized on time and space by reducing the size of the automata

generated at intermediate levels of the algorithm via minimization.

For our experiments, we performed case studies on the iterated prisoner’s dilemma

(IPD), the Bitcoin protocol, and repeated auctions. The experimental methodology

for each case study was two-step process (1) modeling these systems as regular

repeated games, (2) running ComputeNash on the system model, and tally our

observations from the obtained results with previously known results.

The primary objectives of our experiments were:

1. to validate our model of regular repeated games and our definitions of so-

lution concepts, by demonstrating that our analysis of the on case studies

corroborate with previously known results on them.

2. to demonstrate that regular repeated games can model complex systems such

as the Bitcoin protocol. Infact, we do not know of any earlier analysis in

which the Bitcoin protocol has been viewed as a repeated game.

3. to compute Nash equilibria (or best response strategies) in complex game

systems and analyze properties on them.

Our experiments fulfilled all objectives, hence demonstrated promise of the

approach. In particular, ComputeNash allows us to rediscover several known

39

facts about various models of Iterated Prisoner’s Dilemma (IPD) and repeated auc-

tions. In contrast to the automated nature of ComputeNash, previously known

results were obtained via manual analysis, which can be error-prone. Further-

more, the set of all Nash equilibria computed by ComputeNash leads us to infer

new observations about well studied Iterated Prisoner’s Dilemma (IPD). Finally,

we demonstrate that Bitcoin protocol does not ensure fairness – a result also ob-

tained through manual analysis by Eyal and Sirer.

Each experiment was conducted on a single core of a 12 core 2.2GHz Intel Xeon

processor with 64 GB RAM.

4.3.1 Iterated Prisoner’s Dilemma (IPD)

The iterated prisoner’s dilemma (IPD) [38] is the classical example of a repeated

game. We performed a number of experiments with variants of the IPD games.

We discuss ours observations from the results obtained from ComputeNash

for infinitely and finitely repeated Prisoner’s Dilemma. In the following, we use

C,D,E to refer to the actions co-operate, defect, and end of game respectively. The

discount factor is set to 2 for all experiments; Table 3.4 lists the payoffs of agents.

Non-deterministic Infinitely Repeated Iterated Prisoner’s Dilemma Figure 4.7

depicts various strategies for agents considered in our modeling of Infinitely re-

peated IPD. In particular, All corresponds to the strategy where agent non-deterministically

chooses one of the actions. Furthermore, AlwaysC and AlwaysD (Figure 3.1) corre-

spond to the strategies where the agent always takes the action C, i.e. cooperate,

and D, i.e. defect, respectively. Under the GT (Grim Trigger) strategy (Figure 3.2),

the agent cooperates until its opponent defects and then always takes action D (i.e.

defects) regardless of its opponent’s actions. On the other hand, under TFT(Tit-

For-Tat) strategy, the agent begins with C (i.e. cooperates) and simply mimics its

opponent’s actions. Finally, under TF2T (Tit-for-Tat-with-forgiveness) the agent,

40

q0start

(∗,*)

All

q0start

(C,*)

AlwaysC

q0start q1

(C,C)

(C,D)

(D,D)

(D,C)

TFT(Tit-For-Tat)

q0start

q1

q2

(C,C)

(C,D)

(C,D)

(C,C)

(C,D)

(D,D)
(D,C)

TF2T(Tit-for-Tat-with-Forgiveness)

Figure 4.7 : Strategies for agents under IPD. Gradient ∗:C or D; *: C or D. For

payoff, see Table 3.4

similar to TFT, mimics its opponent’s actions until its opponent defects. Unlike

TFT, the agent might immediately retaliate by defecting, or it might wait for its

opponent to defect once more before it retaliates by defecting.

Our experimental evaluation consisted of equilibria computation for games re-

sulting from various combination of strategies for both agents. For lack of space,

we present only a subset of results below:

1. Strategy(1) = {TFT}, Strategy(2) = {TFT,All,AlwaysD,AlwaysC}: The set of Nash

equilibria for this game is {(TFT ,All), (TFT,TFT), (TFT,AlwaysC)}. In other

words, when P1 adopts TFT, P2 should not choose AlwaysD. A closer look

at the strategy profile reveals that when P1 adopts TFT with C as its first

action, it is in the interest of P2 to cooperate.

41

2. Strategy(1) = {GT }, Strategy(2) = {GT,All,AlwaysD,AlwaysC}. The set of Nash

equilibria is {(GT,GT), (GT,All), (AlwaysC)}. Similar to above, the closer look

at the strategy profile reveals that when P1 begins with co-operating, it is

best for P2 to always co-operate.

3. Strategy(1) = {All},Strategy(2) = {All,AlwaysC,AlwaysD}. In this case, the set of

Nash equilibria is {(All,AlwaysD), (All,All)}. An interesting observation is that

in absence of assurance of cooperation from P1, P2 can pursue the strategy of

always defecting.

While the above set of mentioned results were known before [38], our experi-

mental study also provides new exciting results that, to the best of our knowledge,

have not been known before. We summarize one such observation below:

• Strategy(1) = {TFT,TF2T},Strategy(2) = {All}. The set of Nash equilibria in this

case is: {(TFT,All), (TF2T,All)}. The presence of (TFT,All) indicates that if if

P1 has to choose between being forgiving by nature (and hence TF2T) and

Tit-for-Tat, it does not hurt to choose TF2T.

All experiments mentioned above, except for Experiment (3) mentioned above

completed in less than 2.5 mins. Experiment 3 completed in ∼5 mins.

Deterministic Infinitely Repeated PD In this case, we consider games under the

set of deterministic strategies, represented by deterministic transducers, shown in

Figure 4.7. In particular, we consider AlwaysC, AlwaysD, GT and TFT. ComputeNash

is invoked to compute the set of Nash equilibria formed from the above strate-

gies. Similar to previously known results, we observed that when P1 acts accord-

ing to Grim Trigger or Tit-for-Tat, Nash equilibrium is attained when P2 always

co-operates.

Most experiments completed in less than 30 sec. The experiment in which

Strategy(1) = Strategy(2) = {AlwaysC,AlwaysD,GT,TFT} took ∼4 mins to complete.

42

q0start q1

(∗,*)

(∗,*)

(E,E)

AllF

q0start q1

(C,*)

(C,*)

(E,E)

AlwaysCF

q0start q1

(D,*)

(D,*)

(E,E)

AlwaysDF

Figure 4.8 : Strategies for agents under finitely repeated Prisoner’s Dilemma. Gra-

dient ∗:C or D; *: C or D. Payoff (q1,E,E,q1) = 0, for rest, see Table 3.4

The same experiment using the non-deterministic procedure Witness took ∼8.5

mins to complete. The blow up in time is due to the Büchi complementation steps

involved in the non-deterministic procedure for Witness.

Finitely Repeated Iterated Prisoner’s Dilemma Unlike infinitely repeated IPD,

the game in finitely repeated IPD ends after a finite but arbitrary number of inter-

actions. In order to use powerful model of infinitely repeated IPD, we model finite

repeated IPD as an instance of infinitely repeated IPD. To this end, we modify

transducers proposed above to handle finitely many interactions. In particular, we

add a special end-of-game action E that agents take after a finite number of steps.

Once action E is taken, agents are forced to repeatedly take action E. We take the

payoff on all transitions emerging from the E-state to be 0, indicating that no agent

receives any further payoff. Note the initial and accepting states in Figure 4.8.

We let Strategy(1) = Strategy(2) = {AllF ,AlwaysCF ,AlwaysDF}, where XF indi-

cates the finite repeated version of X as illustrated in Figure 4.8. The set of Nash

equilibria is: {(AlwaysDF ,AlwaysDF), (AllF ,AlwaysDF), (AlwaysDF ,AllF)}.

(AlwaysDF ,AlwaysDF) indicates that Nash equilibria is attained when both agents

defect at all times. The other two strategy profiles are in set of all Nash equilibria

since (F −AlwaysD,F −AlwaysD) is contained in them. This validates a known re-

sult for this game obtained via backward induction [38]: the Nash equilibrium in

43

q1start

q2

q3

q4

q5

(s,s,n)

(s
, s
,o
)

(s,s,t)

(r,s,o)

(r,s,n)

(r,s,t)

(s,r,n)
(s,h,0)/ (s,r,t)

(s
,h
,o
)

(s,h,t)
(s
,r
,o
)

(r,r,n)

(r,h,n)

(r
,r
,t
)(r

,h
,t
)

(r,r,o)

(r,h,o)

(s,h,n)

(s,r,t)

(s,h
,o
)

Figure 4.9 : Honest strategy in Bitcoin protocol. Payoffs explained in text.

finitely repeated Prisoner’s Dilemma is attained when both agents always defect.

This experiment completed in ∼6 mins.

4.3.2 Bitcoin Protocol

Bitcoins are one of the most commonly used online-currencies in today’s times.

The protocol by which Bitcoins aremined is called the Bitcoin protocol. The Bitcoin

protocol consists of agents thatmine for Bitcoins, calledminers, and a scheduler that

assigns Bitcoins to miners. Bitcoins are present on a linear blockchain. All miners

constantly mine at the tip of the block-chain. The scheduler assigns the Bitcoin at

the tip to one of the miners. On being assigned the bitcoin, this miner informs all

other miners that it has received the Bitcoin present at the tip, this Bitcoin is popped

from the blockchain, exposing a new tip for all miners to mine on. The miner

receives the Bitcoin only after it is popped from the tip. The scheduler can keep

assigning the Bitcoin at the tip until it is not popped from the blockchain. Honest

miners inform other miners that they have been assigned the Bitcoin immediately

44

after receiving it, while dishonest miners may delay releasing the information. By

delaying this information, it dupes all other miners into continuing to mine at

the older tip, while itself mining on the Bitcoin present next to the tip. In the

instance when the scheduler assigns the same Bitcoin to another miner, it leads to

a situation where two miners have been assigned the same Bitcoin. In this case, if

bothminers release information of the Bitcoin, then only one of theminers receives

it. Depending on whether the dishonest agent received the Bitcoin or not, it either

looses a Bitcoin that it could have easily received, or it manages to receive Bitcoin

while forcing other miners to consume resources on an already assigned Bitcoin,

and while establishing a good lead on the next Bitcoin in the blockchain.

The Bitcoin protocol is said to be incentive compatible if all agents play hon-

estly in order to receive greater rewards from the game. In other words, the Bitcoin

protocol is incentive compatible if in no solution concept an agent decides to play

according to a dishonest strategy. Earlier, Eyal and Sirer proved via rigorous man-

ual analysis that the Bitcoin protocol is not incentive compatible [32]. We show

that same result, however via the automated model checking approach discussed

in Section 4.

Game Model To the best of our knowledge, the Bitcoin protocol has not been

viewed has a repeated game before. In our repeated game model for the Bitcoin

protocol, we assume three agents in the protocol: one honest miner, one dishonest

miner, and one scheduler. The miners either mine for Bitcoins, denoted by s (for

search), or they release information of a Bitcoins’ assignment, denoted by r (for

release). The dishonest miner may additionally hide a mined Bitcoin, denoted by

h (for hide). The scheduler either assigns a Bitcoin to nominer, to the first miner or

to the second miner, denoted by n, o, s. Each agent takes an action in each round.

For simplicity, we assume that the dishonest miner cannot hide information for

more that one Bitcoin.

45

q1start

q2

q3

q4

q5

(s,s,n)

(s
,s
,o
)

(s,s,t)

(s,s,t)

(s,r,o)

(s,r,n)

(s,r,t)
(h,s,n)

(h
,s
,o
)

(h,s,t)

(r,r,n)

(r,r,o)

(r
,r
,t
)

(r,r,t)

(r,s,n)

(r,s,t)

(r,s,o
)

Figure 4.10 : Dishonest strategy in Bitcoin protocol. Payoffs explained in text.

Miners can play according to two strategies: Honest and Dishonest as shown

in Figure 4.9 and Figure 4.10 respectively. In both these figures, state q1 denotes

the state in which no agent has been assigned a Bitcoin by the scheduler, q2 and

q3 denote the state in which the honest and dishonest agent have been assigned

a Bitcoin respectively. q5 denotes the state in which the dishonest agent delays

informing the other agents. Note how the dishonest agent is forced to release

information about the earlier assignment of Bitcoin if it is assigned another one

from this state. q4 the state at which both agents have been assigned the same

Bitcoin.

Also note that the miner plays h on outgoing transitions from q3. These are the

transitions along which the dishonest agent “cheats”.

Under the Honest strategy, a miner performs action s and r only, while the

other miner and scheduler choose between performing s, r, h and n,o, t respectively

(Figure 4.9). As shown in the figure, both miners begin with searching for a mine

in state q1. Therefore, state q1 denotes the state where neither agent has received

a mine. When the honest miner receives a mine, control shifts to state q2 if the

46

dishonest agent is not hoarding a mine, and to state q4 otherwise. State q3 denotes

the state where control shifts to when the dishonest agent receives it’s first mine.

From this state, the dishonest agent may choose to release the mine immediately or

hoard it. Since we have assumed that the dishonest agent has a limited hoarding

capacity of one, control shifts to state q5 if it receives more mine, from where it

is forced to release all but one mine. If the honest agent receives a reward while

control is present in state q3 or q5 (where the dishonest agent is hoarding a mine)

then control shifts to state q4. At q4, either both miners release the mine and

compete it or the dishonest agent continues to hoard it, thereby losing the mine to

the honest agent. Similarly, under the Dishonest strategy, the miner can perform

actions s, r, and h.

Rewards Since we introduce scheduler to model non-deterministic in reward

function, the schedule does not receive any reward. To this end, we assume that it

always receives award of 0. On the other hand, a miner receives reward of 1 if it

releases a block in a state other than q4 and 2 for releasing a block from state q4.

The higher reward of 2 indicates the success of a miner in wasting other miners

resources – a tactic that a dishonest miner would pursue. For all other actions, the

reward is 0 for miners. Note that the dotted transitions result in the game being

non-deterministic due to different utilities.

Experiment and Result We let Strategy(1) = {Honest}, and Strategy(2) = {Honest,

Dishonest}. The Nash equilibria in this game were {(Honest,Dishonest)}. This

denotes that the second agent has an incentive to play dishonestly in the Bitcoin

Protocol. This experiment completed within 30 sec. We suspect that this is because

of fewer strategies for each agent, low values of γ , and fewer iterations for each

agent.

47

q0start (∗,*)

All(v1,v2)

q0start (v1,*)

Always(v1,v2)

q0start q1start

(∗ − 1,*)

(∗ − 1,*)

(v1,*)

(v1,*)

MostlyHonest(v1,v2)

q0start q1start

(∗ − 1,*)

(∗ − 1,*)

(v1,*)

(v1,*)

MostlyDishonest(v1,v2)

Figure 4.11 : Auction Strategies for P1 in 2-agent auction. True valuation of P1 = v1,

True valuation of P2 = v2. Gradient: ∗ : {0,1 . . . v1}, ∗−1 : {0,1 . . . v1−1}, * : {0,1 . . .v2}.

For payoff, see the corresponding auction rule.

Rewards The scheduler does not receive any reward from this protocol, so on

each transition it receives a reward of 0.

Miners do not receive any reward on action s. Transitions along which the

miner plays r in Figure 4.9 and Figure 4.10 are either represented by dashed lines

or by undashed lines. Note that the dashed transitions denote situations in which

both miners release information about the same Bitcoin being assigned to them,

and hence are competing with each other to receive it. In both strategies, the miner

receives 1 unit reward along the undashed lines on action r, denoting that the

miner has received the Bitcoin. In the Honest strategy (Figure 4.9), the miner

receives either 0 or 1 unit reward for taking action r on the dashed lines, depending

on whether it receives the Bitcoin. However, in the Dishonest strategy, the miner

either receives 0 or 2 unit reward. It receives 0 if it looses the Bitcoin, but receives

2 if it receives it since it also manages to waste resource of the other miner.

Figure 4.11 illustrates various strategies for agent P1 in a 2-agent auction (Sim-

ilar strategies exist for P2 as well). All(v1,v2) denotes the strategy in which P1 bids

48

at all values from 0 to v1. Always(v1,v2) denotes the strategy in which P1 bids at v1

only. MostlyDishonest(v1,v2) and MostlyHonest(v1,v2) denote strategies in which

P1 may not always bid at v1. In MostlyDishonest(v1,v2), Pi bids at values lesser

than v1 infinitely often. In MostlyHonest(v1,v2), Pi bids at v1 infinitely often. In

all of these strategies P2 can bid at all values ranging from 0 to v2. Finally, we con-

sider Strategy(1) = { All(v1,v2), All(v1−1,v2), Always(v1,v2),MostlyDishonest(v1,v2),

MostlyHonest(v1,v2) }, and Strategy(2) = {All(v2,v1)}. Both our auction experiments

completed in ∼ 3 mins.

Repeated First-Price Auctions The auction rule for P1, when P1 and P2 bid at u1

and u2 respectively, is given as follows:

FirstPriceAuction(u1,u2) =







































1 if u1 > u2

0 if u1 < u2

0 or 1 if u1 == u2

The set of Nash equilibria computed by ComputeNash is {(All(v1,v2), All(v2,v1)),

(All(v1−1,v2), All(v2,v1)), (Always(v1,v2), All(v2,v1)), (MostlyDishonest(v1,v2), All(v2,v1)),

(MostlyHonest(v1,v2), All(v2,v1))}. The presence of (All(v1−1,v2) and (MostlyDishonest(v1,v2)

in Nash equilibria indicates that P1 has a dominant strategy even she always bids

at values lower than her true valuation, i.e. (All(v1 − 1,v2)), or when she does not

always bid truthfully, i.e. (MostlyDishonest(v1,v2)). This validates the well estab-

lished result that the fist-price auction system is not incentive compatible, i.e. the

agents may have an incentive to not bid truthfully in the auction.

Repeated Vickery Auctions The auction rule for P1, when P1 and P2 bid at u1

and u2 respectively, is given as follows:

VickeryAuction(u1,u2) =























u1 − u2 if u1 ≥ u2

0 otherwise

49

The set of Nash equilibria computed by ComputeNash is {(Always(v1,v2),All(v2,v1)),

(All(v1,v2), All(v2,v1))}. Therefore, P1 does not have a dominant strategy if she does

not always bid at v1. Therefore, unlike repeated First-Price auctions, repeated

Vickery auctions are incentive compatible.

4.4 Summary

This chapter presents the key technical contribution of this work — an algorithm

for computing Nash equilibria in a regular repeated game: ComputeNash. Algo-

rithm ComputeNash executes by searching for a witness strategy profile for every

strategy profile in the input game. The algorithm for determining whether a pro-

file has a witness differs for deterministic and non-deterministic games, since the

number of runs in strategy profiles of both games differ. As a result, we observe

an increase by one exponential factor in the size of the input game in the worst

case analysis (an upper bound) of ComputeNash on deterministic games, and non-

deterministic games. It runs in polynomial and exponential time in the size of the

input game respectively.

The case studies on the iterated prisoner’s dilemma, repeated auctions, and the

Bitcoin protocol demonstrate the utility of our automated approach, and provide a

proof of concept for validation of regular repeated games as an appropriate model

for repeated games. In our experiments, we first modeled the games/systems we

considered as regular repeated games, and then tallied our observations with pre-

viously known results. Our observations on the Nash equilibria and best response

strategy in our case studies corroborate with previously known results on these

games/systems.

50

ALGORITHM 2: Witness(i,StrategyProfile(1),StrategyProfile(2))

Input: Agent idendity index i, StrategyProfile(1) and StrategyProfile(2) in automaton

form

Output: True if StrategyProfile(2) is witness of StrategyProfile(1) w.r.t Pi , False otherwise

1 Deterministic Case:

2 Ŝ← AugmentWt(StrategyProfile1)

3 T̂ ← AugmentWt(StrategyProfile2)

4 Âprod ←MakeProduct(Ŝ , T̂)

5 if Âprod ∩∗i A≻DS(d)
, ∅ then

6 return True

7 else

8 return False

9 Non-deterministic Case:

10 Ŝ← AugmentWtAndLabel(StrategyProfile(1))

11 T̂ ← AugmentWtAndLabel(StrategyProfile(2))

12 Âprod ←MakeProduct(Ŝ , T̂)

13 Witness← Âprod ∩∗i A≻DS(d)

14 Nash← ProjectFirst(Witness)

15 if Nash = Ŝ then

16 return True

17 else

18 return False

51

Chapter 5

ω-Regular Comparator

In Chapter 4, we noted that we require amechanism to compare the aggregate pay-

off along payoff sequences under various aggregate functions. However, computa-

tion of the aggregate along infinite sequences may pose several obstacles, includ-

ing (1). One cannot perform explicit aggregation of an infinite length sequence to

compute its actual value – to calculate the discounted sum of an infinite sequence,

(2). the aggregate value of the payoff sequence may not exists – limit average of a

sequence does not necessarily converge, etc.

However, our objective is simpler than computation – it is comparison. For

our purpose it is sufficient to compare the aggregate of the sequences without per-

forming their explicit computation, if possible. To this end we introduce ω-regular

comparators. The ω-regular comparator for aggregate function f is used to deter-

mine whether f (A) < f (B) for number sequences A and B. More concretely, an

ω-regular comparator for aggregate function f is a Büchi automaton that accepts

a pair of sequences (A,B) iff f (A) < f (B). An ω-regular comparator exploits the

properties of the aggregate function f to determine the relationship between f (A)

and f (B) by simply reading the sequences A and B simultaneously. Note that the

existence of a comparator automaton for f (A) < f (B), automatically implies the ex-

istence of a comparator for f (B) < f (A), their respective negations i.e. f (A) ≥ f (B)

and f (B) ≥ f (A), and equality. Therefore, the existence of a comparator automaton

for any one inequality ensures the existence of a comparator for all other inequality

and equality relationships.

In this chapter, we look at two aggregate functions – discounted sum and limit

52

average. Let A be an infinite number sequence. The discounted sum for discount

factor d > 1 is DS(A,d) = Σ
∞
i=0ai/d

i . The limit average of a sequence A is LA(A) =

limT→∞
1
T ·Σ

T
i=0ai . We show a complete construction of an ω-regular comparator

for the discounted sum aggregate function (Section 5.2), and present partial results

for the same with the limit average comparator in Section 5.3.

Since we draw upon number sequences that arise from repeated regular games

or similar finite state machines, we confine our interest to ω-regular number se-

quences i.e. number sequences that are derived from a Büchi automaton over a

finite alphabet of rational numbers.

In the sequel, we assume all payoffs to be non-negative integers. This assump-

tion is justified as our objective is to compare discounted sum/limit average of ra-

tional number sequences over a finite set of rational number alphabet. Rational-

valued weights can be normalized to non-negative integers using a linear transfor-

mation that does not affect the result of the above comparisons.

The rest of this chapter is organized as follows: Section 5.1 discusses previous

work on discounted sum and limit average with finite state machines. The com-

parator automaton for discounted sum and limit average are given in Section 5.2

and Section 5.3 respectively.

5.1 Prior work

Finite state machines with weights on accepting words have been studied previ-

ously as weighted automata [29, 30], quantitative languages [19] etc. Words with

weights find diverse applications. Some of them include text, speech and image

processing [43], in probabilistic system [6] and in probabilistic automata [55], and

in verification of quantitative systems. Questions arising from these domains have

lead to conceptual and algorithmic development in quantitative variants of empti-

ness, universality, equivalence, and language-inclusion problems in the context of

(finite and infinite) words with weights over various aggregate functions [3, 19,

53

44].

The game-theoretic setting gives rise to a distinct but important problem: the

ability to compare aggregate along two infinite sequences regularly i.e. with an au-

tomaton. To the best of our knowledge, the problem of comparison of the aggre-

gate value along two sequences has not been explored by the regular quantitative

analysis community. ω-regular comparators work towards filling this gap in the

analysis of quantitative words.

First we present the discounted sum comparator: comparator when sequence

aggregate is computed using the discounted sum function. Discounted sum au-

tomata have been considered previously in various other contexts [13? , 14]. The

key idea for comparison under discounted sum aggregate function with discount

factor d is to treat the values as a number in base d. This is akin to the treatment

of real numbers in regular real analysis [21].

5.2 Discounted sum comparator

We now describe the construction of an automaton that enables us to compare dis-

counted sum of two number sequences. We introduce some useful notation. For an

infinite sequence A and a rational d =
p
q > 1, the discounted sum of A with respect

to discount factor d, denoted by DS(A,d), is defined as Σ∞i=0A[i]/d
i , where A[i] de-

notes i-th element of A. Let A≻DS(d)
denote the automaton that accepts (A,B) iff

DS(A,d) < DS(B,d). Before diving into the details of construction, we first discuss

the key ideas behind our construction.

Key ideas We construct an automaton A≻DS(d)
for a given rational d =

p
q > 1 that

accepts a pair of positive number sequences (A,B) iff DS(A,d) < DS(B,d). The core

idea behind this construction is to enable A≻DS(d)
to non-deterministically guess a

sequence C s.t DS(B,d) = DS(A,d) +DS(C,d) s.t. DS(C,d) > 0. Note that such a

sequence C exists if and only if DS(B,d) > DS(A,d). Note that every element of A

54

and B has to be bounded but may not necessarily be to smaller than d.

Now consider the equation: DS(B,d) = DS(A,d) +DS(C,d). From arithmetic of

numbers, we can rewrite it as B = A +C, where the operators + and = are defined

in base d. If one were to perform addition of A and C in base d, one would also

obtain sequence of carry elements, denoted by X henceforth. It is easy to see that

following relationship between sequences A,B,C, and X.

Lemma 5.1

Let A,B,C,X be the number sequences, d =
p
q > 1 be a positive rational such that

following invariant holds true:

1. When i = 0, A[0] +C[0] +X[0] = B[0]

2. When i ≥ 1, A[i] +C[i] +X[i] = B[i] + d ·X[i − 1]

Then DS(B,d) =DS(A,d) +DS(C,d).

Proof 5.1 DS(A,d) + DS(C,d) = Σ
∞
i=0A[i]

1
d i

+ Σ
∞
i=0C[i]

1
d i

= Σ
∞
i=0(A[i] + C[i]) 1

d i
. On

substituting each A[i] + C[i] based on Equations 1 and 2, we obtain DS(A,d) +

DS(B,d) = (B[0]−X[0])+Σ∞i=1 (B[i]+d ·X[i−1]−X[i]) 1
d i
. On rearranging the elements

this is equal to Σ
∞
i=0B[i] ·

1
d i
−Σ∞i=0X[i] · 1

d i
+Σ∞i=1d ·X[i−1] · 1

d i
= Σ

∞
i=0B[i] ·

1
d i

=DS(B,d).

Hence, we have proved that under the conditions imposed by Equation 1 and 2,

DS(A,d) +DS(C,d) =DS(B,d).

Hence, an alternate way of determining the difference between B and A is to guess

sequences C and X which satisfy the above equations. It is worth noting that com-

putation of i-th element of C and X depends only on i and (i − 1)th elements of A

and B. In addition, since A and B are bounded integer sequences, the difference of

DS(B,d) and DS(A,d) is also bounded. Therefore, C and X are also bounded. Fur-

thermore, we can prove that C and X can both be constructed from a fixed finite

set of rational numbers as long as A and B are both bounded integer sequences (We

defer the formal proof to the supplemental material). Together, these three obser-

vation suggest that we can construct a Büchi automaton A≻DS(d)
in which (i). state

55

sstart (0,1) (0,0)

(0,⊥)(−2,1)

(0,1)
(0,0), (1,1)

(1,0)

(0,0)

(0,1)

(0,1)

(1,0)

(0,0)

Figure 5.1 : Snippet of A≻DS(2)
.

are represented by (x,c) where x and c range over all possible values (which are

finite) of elements of X and C, (ii) the start state is a special state s, (iii) transitions

from the start state s
(a,b)
−−−−→ (x,c) satisfy Equation 1, a + c + x = b, (iv) all other tran-

sitions (x1, c1)
(a,b)
−−−−→ (x2, c2) satisfies Equation 2, a+ c2 + x2 = b + d · x1, and (v) word

rejection by termination. From Lemma 5.2, we can see that automaton A≻DS(d)
will

accept (A,B) iff DS(B,d) = DS(A,d) +DS(C,d), where C is obtained from the state

sequence of (A,B).

However, there is caveat: Merely satisfying DS(B,d) = DS(A,d) +DS(C,d) does

not guarantee DS(C,d) > 0, which is required to ensure DS(B,d) > DS(A,d). To

handle this corner case, we add additional states represented by (x,⊥), where x

ranges over all possible (finite) values of X. We explain the reason for this at the

end of the construction. The formal construction of automaton A≻DS(d)
is given

below:

Construction We provide a construction for A≻DS(d)
.

Take maxC =max · d
d−1 and maxX = 1+ max

d−1 . A≻DS(d)
= (S,Σ,δd ,Init,F) where

• S = Init∪ Sacc ∪ S⊥ where

Init = {s},

Sacc = {(x,c)||x| ≤maxX,0 ≤ c ≤maxC}, and

56

S⊥ = {(x,⊥)||x| ≤maxX}

where x and c are of the form m
q for integral values of m.

• Σ = {(a,b) : 0 ≤ a,b ≤max} where a and b are integers.

• δd is defined as follows:

1. Transitions from start state s:

i (s, (a,b), (x,c)) for all (x,c) ∈ Sacc s.t. a+ x + c = b and c , 0.

ii (s, (a,b), (x,⊥)) for all (x,⊥) ∈ S⊥ s.t. a+ x = b

2. Transitions within S⊥: ((x,⊥), (a,b), (x′ ,⊥)) for all (x,⊥), (x′ ,⊥) ∈ S⊥, if

a+ x′ = b + d · x

3. Transitions within Sacc: ((x,c), (a,b), (x
′ , c′)) for all (x,c), (x′, c′) ∈ Sacc where

c′ < d, if a+ x′ + c′ = b + d · x

4. Transition between S⊥ and Sacc: ((x,⊥), (a,b), (x′ , c′)) for all (x,⊥) ∈ S⊥,

(x′, c′) ∈ Sacc where 0 < c′ < d, if a+ x′ + c′ = b + d · x

• Init = {s}

• F = Sacc

Note that c only takes non-negative values. Therefore the requirement forDS(C,d) >

0 is to ensure that the resulting sequence C consists of at least one non-zero value.

In the construction above, transitions into and out of states (x,⊥) satisfy Equation 1

or 2 (depending on whether transition is from start state s) where ⊥ is treated as

c = 0. Any valid execution of (A,B) can enter the accepting states Sacc from the

start state s and states in S⊥ only if the execution witnesses a non-zero value of c

that satisfies Equation 1 and 2 respectively. This ensures that (A,B) is accepted

only if DS(C,d) > 0.

57

Analysis We now prove that the construction given above results in an automa-

ton that can compare the discounted sum of two bounded integer number se-

quences for a given discount factor d > 0.

First, we show that each accepting run for word (A,B) in A≻DS(d)
satisfies the

condition that DS(B,d) > DS(A,d). We prove this by showing that for each accept-

ing run of (A,B) one can construct a number sequence C s.t. DS(B,d) = DS(A,d) +

DS(C,d) and DS(C,d) > 0.

We make the following crucial observation about the structure of number se-

quences A, B and C.

Lemma 5.2

Let A,B,C,X be the number sequences, d =
p
q > 1 be a positive rational such that

following invariant holds true:

1. When i = 0, B[0] = A[0] +X[0] +C[0]

2. When i ≥ 1, B[i] + d ·X[i − 1] = A[i] +X[i] +C[i].

Then DS(B,d) =DS(A,d) +DS(C,d).

Proof 5.2 DS(A,d)+DS(C,d) = Σ
∞
i=0A[i]

1
d i
+Σ∞i=0C[i]

1
d i

= Σ
∞
i=0(A[i]+C[i])

1
d i

= (B[0]−

X[0])+Σ∞i=1(B[i]+d ·X[i−1]−X[i]) 1
d i

= (B[0]−X[0])+Σ∞i=1(B[i]+d ·X[i−1]−X[i]) 1
d i

=

Σ
∞
i=0B[i] ·

1
d i
−Σ∞i=0X[i] +Σ

∞
i=0X[i] = Σ

∞
i=0B[i] ·

1
d i

=DS(B,d)

In Lemma 5.3, we show that we can derive sequences C and X that satisfy the

above mentioned constraints from the values of c and x from state (x,c) present in

an accepting state sequence of word (A,B) in the constructed automaton A≻DS(d)
.

In Lemma 5.4, we show that sequence C generated by collecting c from the state

sequence of the accepting run is such that DS(C,d) > 0. We bind the above two

observations in Corollary 5.1 to show that (A,B) is accepted by A≻DS(d)
only if

DS(B,d) >DS(A,d).

58

Lemma 5.3

For every infinite run of (A,B) in A≻DS(d)
, there exists a sequence C, s.t DS(B,d) =

DS(A,d) +DS(C,d).

Proof 5.3 Define functions XVal and CVal : S 7→Z where S is the set of all states in

A≻DS(d)
as follows:

CVal(state) =







































0 if state = s ∈ Init

c if state = (x,c) ∈ Sacc

0 if state = (x,⊥) ∈ S0

XVal(state) =







































0 if state = s ∈ Init

x if state = (x,c) ∈ Sacc

x if state = (x,⊥) ∈ S0

Consider an infinite run of word (A,B) in A≻DS(d)
. Let {statei}i be the sequence of

states visited by this run. Construct sequences C and X s.t. C[i] = CVal(statei+1)

and X[i] = XVal(statei+1).

When i = 0, then either X[0] and C[0] derive their values from either (x,c) ∈

Sacc, or from (x,⊥) ∈ S0. We consider the cases separately below:

1. From (x,c) ∈ Sacc: In this case, the 0-th transition is s
(a,b)
−−−−→ (x,c). From con-

struction, we know that a + x + c = b. Since, A[0] = a, B[0] = b, C[0] = c, and

X[0] = x, we have A[0] +X[0] +C[0] = B[0].

2. From (x,⊥) ∈ S0: In this case, the 0-th transition is s
(a,b)
−−−−→ (x,⊥). From con-

struction, we know that a + x = b. Since, A[0] = a, B[0] = b, C[0] = 0, and

X[0] = x, we have A[0] +X[0] +C[0] = B[0].

Therefore, in either case, the first condition on Lemma 5.2 is satisfied.

For i ≥ 1, transitions are either within S0, or within Sacc, or from S0 to Sacc. We

will consider each of these cases separately:

59

1. Within S0: Transitions are of the form (x,⊥)
(a,b)
−−−−→ (x′,⊥) where a+x′ = b+d ·x.

Suppose this is the i-th transition in a run (for i ≥ 1). In this case, A[i] = a,

B[i] = b, C[i] = CVal(x′) = 0, X[i] = XVal(x′) = x′, and X[i − 1] = XVal(x) = x.

So, B[i] + d ·X[i − 1] = A[i] +X[i] +C[i].

2. Within Sacc: Transitions are of the form of (x,c)
(a,b)
−−−−→ (x′, c′). Suppose this

is the ith transition in a run (for i ≥ 1). From construction we know that

a+x′ + c′ = b+d · x. Here A[i] = a, B[i] = b, C[i] = c, X[i] = x, and X[i −1] = x′.

Therefore, B[i] + d ·X[i − 1] = A[i] +X[i] +C[i].

3. From S0 to Sacc: Transitions are of the form (x,⊥)
(a,b)
−−−−→ (x′, c′) s.t. a+ x′ + c′ =

b+d ·x. Suppose this is the i-th transition, then A[i] = a, B[i] = b, X[i −1] = x,

X[i] = x′, C[i] = c′. Therefore, B[i] + d ·X[i − 1] = A[i] +X[i] +C[i].

In each of these cases, when i ≥ 1, the second condition in Lemma 5.2 is satisfied.

Together we see that, for any infinite run of (A,B), we can construct sequences

C and X, s.t. using Lemma 5.2 we can prove that DS(B,d) =DS(A,d) +DS(C,d).

Lemma 5.4

For every accepting run of (A,B) in A≻DS(d)
, DS(C,d) > 0.

Proof 5.4 For a run to be accepting in A≻DS(d)
, it must visit at least one state in Sacc

infinitely often. Note that once a run visits a state in Sacc, it only visits states in

Sacc since there are no transitions out of Sacc. Since there are finitely many Sacc,

the sufficient condition for a state to be accepting is that a run must enter Sacc.

There are two ways of entering Sacc, either via s
(a,b)
−−−−→ (x,c) or via (x,⊥)

(a,b)
−−−−→ (x′, c′).

Suppose this is the i-th transition in the accepting run, then C[i] , 0. Also, we

know that for all j, C[j] ≥ 0. Hence, DS(C,d) ≥ C[i] > 0.

Corollary 5.1

(A,B) in =⇒ DS(B,d) >DS(A,d).

60

Proof 5.5 From Lemma 5.3, and Lemma 5.4, it is clear that for all accepting runs

of (A,B) in A≻DS(d)
, DS(B,d) >DS(A,d).

So far we have shown that every accepting word (A,B) of A≻DS(d)
satisfies the

condition that DS(B,d) > DS(A,d). We want to show the other direction: for every

pair of non-negative sequences A,B if DS(B,d) >DS(A,d) then (A,B) is accepted by

automaton A≻DS(d)
.

For this part of the proof we assume that sequences A, B are bounded by µ. We

also introduce some useful notation. Let DS−(B,A,d, i) = Σ
i
j=0(B[j]−A[j]) ·

1
dj
. Also,

let DS−(B,A,d, ·) = Σ
∞
j=0(B[j] − A[j]) ·

1
dj

= DS(B,d) −DS(A,d). Define µC = µ · d
d−1 ,

µX = 1+
µ

d−1 . We define the residual function Res :N∪ {0} 7→ R as follows:

Res(i) =























DS−(B,A,d, ·)− ⌊DS−(B,A,d, ·)⌋ if i = 0

Res(i − 1)− ⌊Res(i − 1) · d i · q⌋ · 1
d i ·q

otherwise

Accordingly, we define function C :N∪ {0} 7→Z as follows:

C(i) =























⌊DS−(B,A,d, ·)⌋ if i = 0

⌊Res(i − 1) · d i · q⌋/q otherwise

Intuitively, C(i) is computed by stripping off the value of the i-th digit in a repre-

sentation of DS−(B,A,d, ·) in base d. C(i) denotes the numerical value of the i-th

position of the difference between B and A. The residual function denotes the nu-

merical value of the difference remaining after assigning the value of C(i) until

that i. Furthermore, we define CSum(i) = Σ
i
j=0C(i) ·

1
dj
. and X : N ∪ {0} 7→ R s.t

X(i) = (DS−(B,A,d, i)−CSum(i)) · d i .

Lemma 5.5

For all i ≥ 0, Res(i) =DS−(B,A,d, ·)−CSum(i).

Proof 5.6 Proof by simple induction on the definitions of functions Res and C.

Lemma 5.6

When DS−(B,A,d, ·) ≥ 0, for all i ≥ 0, 0 ≤ Res(i) < 1
d i
.

61

Proof 5.7 Since, DS−(B,A,d, ·) ≥ 0, Res(0) = DS−(B,A,d, ·) − ⌊DS−(B,A,d, ·)⌋ ≥ 0 and

Res(0) =DS−(B,A,d, ·)− ⌊DS−(B,A,d, ·)⌋ < 1 . Specifically, 0 ≤ Res(0) < 1.

Suppose for all i ≤ k, 0 ≤ Res(i) < 1
d i
. We show this is true even for k +1.

Since Res(k) ≥ 0, Res(k) ·dk+1 ·q ≥ 0. Let Res(k) ·dk+1 ·q = x+ f , for integral x ≥ 0,

and fractional 0 ≤ f < 1. Then Res(k + 1) =
x+f

dk+1·q
− x

dk+1·q
=⇒ Res(k + 1) < 1

dk+1·q
.

Since q ≥ 1, Res(k +1) < 1
dk+1

.

Also, Res(k +1) ≥ 0 since a− ⌊a · b⌋/b ≥ 0 for all positive values of a and b.

Lemma 5.7

When DS−(B,A,d, ·) ≥ 0, for i = 0, 0 ≤ C(0) ≤ µC , and for i ≥ 1, 0 ≤ C(i) < d.

Proof 5.8 Since both A and B are non-negative bounded number sequences, maxi-

mum value ofDS−(B,A,d, ·) is when B = {µ}i andA = {0}i . In this caseDS−(B,A,d, ·) =

µC . Therefore, 0 ≤ C(0) ≤ µC .

From Lemma 5.6, we know that for all i, 0 ≤ Res(i) < 1
d i
. Alternately, when

i ≥ 1, 0 ≤ Res(i − 1) < 1
d i−1

=⇒ 0 ≤ Res(i − 1) · d i < 1
d i−1
· d i =⇒ 0 ≤ Res(i − 1) · d i <

d =⇒ 0 ≤ ⌊Res(i − 1) · d i⌋ < d =⇒ 0 ≤ C(i) < d.

Corollary 5.2

When DS−(B,A,d, ·) ≥ 0, Range(C) is finite.

Proof 5.9 From definition of C, we know that C(0) takes integral values only. Fur-

ther, from Lemma 5.7, we know that C(0) is bounded. Hence, C(0) takes finitely

many values.

For i > 0, from definition of C it is clear that C(i) is of the form m
q for integral

values ofm. Lemma 5.7 shows that each C(i) is bounded by a fixed constant. Hence

there are finitely many values of C(i) for all other values of i.

Together, the above two show that Range(C) is finite.

Lemma 5.8

When DS−(B,A,d, ·) ≥ 0, then for all i ≥ 0, |X(i)| ≤ µX .

62

Proof 5.10 From definition of X, we know that X(i) = (DS−(B,A,d, i) − CSum(i)) ·

d i =⇒ X(i) · 1
d i

= DS−(B,A,d, i) − CSum(i). From Lemma 5.5 we get X(i) · 1
d i

=

DS−(B,A,d, i) − (DS−(B,A,d, ·) − Res(i)) =⇒ X(i) · 1
d i

= Res(i) − (DS−(B,A,d, ·) −

DS−(B,A,d, i)) =⇒ X(i) · 1
d i

= Res(i) − (Σ∞j=i+1(B[j] − A[j]) ·
1
dj
) =⇒ |X(i) · 1

d i
| ≤

|Res(i)| + |(Σ∞j=i+1(B[j] −A[j]) ·
1
dj
)| =⇒ |X(i) · 1

d i
| ≤ |Res(i)| + 1

d i+1
· |(Σ∞j=0(B[j + i + 1] −

A[j + i + 1]) · 1
dj
)| =⇒ |X(i) · 1

d i
| ≤ |Res(i)|+ 1

d i+1
· |µC |. From Lemma 5.6, this implies

|X(i) · 1
d i
| ≤ 1

d i
+ 1

d i+1
· |µC | =⇒ |X(i)| ≤ 1+ 1

d · |µC | =⇒ |X(i)| ≤ 1+
µ

d−1 =⇒ |X(i)| ≤ µX

Corollary 5.3

When DS−(B,A,d, ·) ≥ 0, Range(X) is finite.

Proof 5.11 From expanding X(i), we see that each X(i) is of the form m
q for integral

values of m. Since X(i) is bounded (see Lemma 5.8), this proves that Range(X) is

finite.

We overload notation, and define number sequences C and X s.t. for all i ≥ 0,

C[i] = C(i) and X[i] = X(i).

Lemma 5.9

When DS−(B,A,d, ·) ≥ 0, then A, B, C and X satisfy the following invariant

1. B[0] = A[0] +C[0] +X[0]

2. For i ≥ 1, B[i] + d ·X[i − 1] = A[i] +C[i] +X[i]

Proof 5.12 We prove this by induction on i using definition of function X.

When i = 0, then X[0] = X(0) = DS−(B,A,d,0) − CSum(0) =⇒ X[0] = B[0] −

A[0]−C[0] =⇒ B[0] = A[0] +C[0] +X[0].

When i = 1, then X[1] = X(1) = (DS−(B,A,d,1) −CSum(1)) · d = (B[0] +B[1] · 1d −

(A[0] +A[1] · 1d) − (C[0] +C[1] · 1d)) · d =⇒ X[1] = B[0] · d + B[1] − (A[0] · d +A[1]) −

(C[0] · d +C[1]). From the above we obtain X[1] = d ·X[0] + B[1] −A[1]−C[1] =⇒

B[1] + d ·X[0] = A[1] +C[1] +X[1].

63

Suppose the invariant holds true for all i ≤ n, we show that it is true for n + 1.

X[n + 1] = (DS−(B,A,d,n + 1) −CSum(n + 1)) · dn+1 =⇒ X[n + 1] = (DS−(B,A,d,n) −

CSum(n)) · dn+1 + (B[n + 1] −A[n + 1] −C[n + 1]) =⇒ X[n + 1] = X[n] · d + B[n + 1] −

A[n+1]−C[n+1] =⇒ B[n+1] +X[n] · d = A[n+1] +C[n+1] +X[n+1].

We construct state sequence S = {s}i as follows: Suppose j ≥ 0 is the first in-

stance where C[j] > 0

si =







































s if i = 0

(X[i − 1],⊥) if 0 < i ≤ j

(X[i − 1],C[i − 1]) if i > j

Lemma 5.10

When DS−(B,A,d, ·) ≥ 0, then S is a valid run of (A,B) in A≻DS(d)
.

Proof 5.13 This is straight forward from Lemma 5.9 and construction of A≻DS(d)
.

Note that the construction makes use of finiteness of Range(C) (See Corollary 5.2)

and Range(X) (See Corollary 5.3)

Corollary 5.4

Let A and B be two non-zero bounded (by µ) integer sequences. SupposeDS(B,d) >

DS(A,d), then (A,B) has an accepting run in A≻DS(d)
.

Proof 5.14 For the given sequencesA and B, generate sequences C andX as defined

by functions C and X respectively. Then from Lemma 5.2 and Lemma 5.9, we

know that DS(C,d) > 0. Since 0 ≤ C[i], there exists at least on i where C[i] , 0. Let

j be the first such index. Then from S we see that the state run moves into states

in Sacc in the j-th transition, and remains in Sacc thereon. Therefore this run an

accepting run for (A,B) in A≻DS(d)
.

64

Theorem 5.1

Let d =
p
q > 1 be a positive rational, and µ ∈Z+. Suppose A and B are non-negative

integer sequences bounded by µ. Then Büchi automaton A≻DS(d)
accepts (A,B) if

and only if DS(A,d) <DS(B,d).

Proof 5.15 Immediate from Corollary 5.1 and Corollary 5.4.

5.3 Limit average comparator

The limit average of a sequence A is defined as follows: limT→∞
1
T · Σ

T
i=0ai . The

limit average saga is much more complex that the discounted sum case. Some

reasons are (1). the limit average is not defined for all sequences[58] (2). we have

not been able to identify any regular property i.e. any property that will enable the

construction of an automaton with finitely many states. In the case of discounted

sum aggregate function, we were able to identify properties such as a finite number

set for carry-bits and the difference sequence bits (sequences X and C respectively)

etc.

We have had partial success in designing a comparator for the limit average

aggregate function. We have been able to identify a special class of language (for

number sequence) for which it is possible to determine the value of the limit aver-

age of sequences in it without performing the computation explicitly.

We begin with some useful definitions. A language L over infinite words is said

to be a bounded language (BL) if all its words are derived by concatenation of finite

words present in a set B. B is said to be the building block of language L, and L is

denoted by Bω. A building block B is said to be a same average building block (SABB)

if all words in B have the same average. A bounded language L is said to be a same

limit-average bounded language (SABL) if the limit average is defined for all words

in L, and all words have the same limit average.

We will show a correspondence between the limit average of words in bounded

language L and the average of words in its building block B, where L = ABω and

65

A is a regular language. The key idea is that in infinite words the limit average is

determined by finite sequences that appear infinitely often i.e. in B and not by the

words in A. Hence, we can shift focus only on the relationship between the average

in B and the limit average in L = ABω. We observe that

Lemma 5.11

Let L = Bω s.t. each word in L has a well-defined limit average. Then each word in

B must have the same average.

Proof 5.16 (Proof sketch) Suppose not, then there exists two words w1 and w2 in

B s.t. their averages are given by a1 and a2 respectively where a1 , a2, and their

lengths are given by l1 and l2. WLOG, let a1 < a2. Then we can construct a word

such that the average of its prefixes will keep fluctuating between 3a1+a2
4 and a1+a2

2 .

The idea is to construct a word in (w∗1 ·w
∗
2)

ω as follows:

1. Begin with the smallest x1 =w
l2
1 w

l1
2 . The average of this word is a1+a2

2 .

2. Append x2 ∈ (w∗1 ·w
∗
2) to x1 s.t. the number of w1 and w2 in x1x2 (n and m

respectively) satisfy the following constraint: m
n ≈

3l2
l1
. The average of x1x2 is

≅
3a1+a2

4 .

3. Append x3 ∈ (w∗1 ·w
∗
2) to x1x2 s.t. the number of w1 andw2 in x1x2x3 (n andm

respectively) satisfy the following constraint: m
n ≈

l2
l1
. The average of x1x2x3

is ≅ a1+a2
2 .

Keep appending x1 . . . x2k+1 with x2k+2 and x2k+3 s.t. the conditions in Step 2 and

Step 3 are satisfied. In the resulting word x = x1x2 . . . , the average of prefixes will

keep fluctuating between 3a1+a2
4 and a1+a2

2 . Hence the limit average of x will not be

well defined. But, this is contradictory to our assumption, that the limit average of

each word in L is well defined.

Hence, we have shown via contradiction that all words in Bmust have the same

average.

66

Corollary 5.5

Let L = ABω s.t. each word in L has a well-defined limit average. Then each word

in B must have the same average.

Proof 5.17 (Proof sketch) Since words in A are of finite length, the limit average of

each word is really determined by the word segment present in B. The rest follows

directly from Lemma 5.11.

However, for a language L = Bω to be a SABL it is not sufficient for the building

block B to be an SABB. As an example, Let B ⊆ 0∗1∗ s.t each building block b ∈ B has

average of 0 < k < 1., then L = B = {0,1}∗. We will construct a word in Bω for which

the limit average doesn’t exists. Take a long enough w ∈ B∗. ClearlyAvg(w[n]) = k.

Let its length be ln. Take a string of ln 0s. Since ln is large enough, and 0 < k < 1, we

can find lm number of 1s s.t. 0lm1ln ∈ B has an average of k. Then Avg(w[n]0lm) = k
2 ,

but Avg(w[n]0lm1ln) = k. Now extend w[n]0lm1ln the way we extended w. We will

notice that the average will keep fluctuating between k and k
2 . So, the limit average

of this word will not exist.

In what follows we show some restrictions on the SABL B under which the

resulting bounded language L = Bω is an SABL.

Lemma 5.12

Let B be an SABB. Let all words of B be of bounded length. Then the corresponding

bounded language L = Bω is an SABL.

Furthermore, limit average of each word in L is the same as the average of each

word in B.

Proof 5.18 Let B be a set of words where the length of the word wi is given by li ,

and the average of all words is a. Let l be the maximum length of all words in B.

Let w = a0a1 · · · ∈ B
ω. Let w[n] denote the n-length prefix of w. Since w ∈ Bω,

each w[n] is represented by w0 . . . wkan−pan−p+1 . . . an for some p < lm and no word

wi ∈ B is a prefix of an−p+1 . . . an.

67

Now LA(w) = limn→∞Avg(w[n]). Since, Avg(w[n]) =
m·Σk

j=0lk+Σ
n
j=n−p+1val(aj)

Σ
k
j=0lk+p

. Now,

f l
k =

m·Σk
j=0lk

Σ
k
j=0lk+l

≤
m·Σk

j=0lk+Σ
n
j=n−p+1val(aj)

Σ
k
j=0lk+p

≤
m·Σk

j=0lk+m·l

Σ
k
j=0lk

= f u
k .

Since l is fixed, as k→∞, l ≪ Σ
k
j=0lk . Therefore, f

l
k , f

u
k →

m·Σk
j=0lk

Σ
k
j=0lk

=m.

Therefore, Avg(w[n]) converges to m [58].

Let B be a finite state automata with weight on all transitions. The weight on

any finite path in B is given by the sum weights along transitions along the path.

Average of weight along a path is calculated as the ratio of weight the of path and

length of the path. If the average weight of all simple cycles in B is the same, we

call B a regular same average building block (RSABB). The corresponding bounded

language L = Bω consists of words that are present in B when B is treated like

a Büchi automaton. Note that we have overload the notation of Bω. However,

the definition of L is clear from whether B is an SABB or a RSABB. Hence, all

words in L are words of the form w1(Cycle)
ω where w1 is a finite accepting word

in finite automaton B, and Cycle denotes the language of complex cycles in B. In

Lemma 5.13 we will show that when B is a RSABB, the limit average of all words

in bounded language L exists, and that the limit average of all words in L is the

same . We call bounded language L = Bω a regular same average bounded language

(RSABL).

Lemma 5.13

Let B be a RSABB. Then L = Bω is a RSABL.

Proof 5.19 (Proof sketch) Each word w in L is of the form w0(Cycle)
ω where w0 is

a finite accepting word in finite automaton B, and Cycle denotes the language of

complex cycles i.e. of simple cycles in B, possibly nested within one another.

We will argue via induction on the depth of nesting of complex cycles in Cycle,

that w ∈ w0(Cycle)
ω has limit average a, where a is the average of simple cycles in

B. At nested depth 0, w ∈ w0(c1 + · · · + cm)
ω where ci is a simple cycle in B. Since

68

w0 is of finite length, we can ignore its weight in the limit average computation of

w. Furthermore, since each ci is of bounded length and has the same average of a,

from Lemma 5.12 we know that the limit average of w exists, and it is equal to a.

Suppose, we know that limit average is true for words with nested depth k.

We give the intuition behind the proof for word with nested depth k +1. Let word

w ∈w0(Cyclek+1)
ω, where Cyclek+1 is the the set of cycles of maximum nested depth

k+1. Let Ck+1 be a cycle of depth k+1. We look at the simplest possible such cycle.

Ck+1 = c
f
0 . . . c

f
k ck+1c

b
k . . . c

b
0 where c

f
i c

b
i (for all i) and ck+1 are simple cycles. Not that

the average of each c
f
i . . . c

b
i is also a i.e. sub-sequences of cycle Ck+1 have average

an of a. When the word length is sufficiently long, the weight of word c
f
0 . . . c

f
i−1

can be ignored. With this additional piece of information, we can argue as we did

in Lemma 5.12 that all words w with nested cycles such as Ck+1 also have limit

average of a. Similarly, it holds true for more complicated cycles of nested depth

k +1.

Corollary 5.6

Let B be a RSABB, and A be a weighted automaton. Then L = ABω is an RSABL.

Furthermore, the limit average of each word in L is the same as the average of

each word in B

Proof 5.20 (Proof sketch) Since A is a set of finite words, the limit average is deter-

mined by words in B. From Lemma 5.13, we know that Bω is a SABL with limit

average equal to the average of words in B.

Theorem 5.2

Let B be a building block weighted automaton, and A be any weighted automaton.

Then L = ABω is a RSABL iff B is an RSABB.

Furthermore, the limit average of words in L is the same as the average of words

in B.

Proof 5.21 This is immediate from Corollary 5.5 and Corollary 5.6.

69

Theorem 5.2 proves a necessary and sufficient condition for when a bounded

language L is an RSABL. Therefore, to check if L is a RSABL, we only need to

determine if B is an RSABB. Furthermore, there is an easy algorithm to test if B

is an RSABB. The algorithm is based on enumerating all simple cycles in B, and

checking if their average is the same.

Extension to general Büchi automaton We extend the ideas developed for SABL

to design an incomplete procedure to compute and compare the limit average of

ω-number sequences present in a a general Büchi automaton.

Let L be the language of a Büchi automaton AL. We know that each ω-regular

language L can be written as A1B
ω
1 + · · ·+AnB

ω
n [7]. Our goal is to decompose AL in

a manner that identifies building blocks Bω
i which are SABBs.

We utilize standard graph theoretic and automata-theoretic procedures to de-

compose a given Büchi automaton AL into its Σn
i=1AiB

ω
i form. For this we identify

all distinct strongly connected components in the given automatonAL. We discard

all those SCCs which do not contain even a single accepting state of AL. Suppose

S is an SCC with at least one accepting state. We check if all simple cycles present

in S have the same average. If not, we discard it, else we keep it. It is sufficient

to check for simple cycles in an SCC because every path in an SCC is present on a

cycle. Note that the set of SCC is disjoint.

For each SCC make as many copies of it as many accepting states it contains.

This ensures that there is a one-one correspondence between SCCs and the accept-

ing state present in it. Hence, the SCC containing accepting state qi is denotes by

Bi .

For each such qi , construct the automaton that accepts all finite words in AL

that end in state qi . Denote this by Ai .

Consider the language L′ = Σ
n
i=1AiB

ω
i . Every word ending in SCC Bi has a well

defined limit average and it is equal to the average of simple cycles present in Bi .

70

q1

0

1

Figure 5.2 : Discarded SCC

Therefore, we can compare an implicitly compute the limit average of all words

present in L′.

To compare the limit average of these words, we take the product of L′ with

itself, identify each qi with the average of simple cycles passing through it, and

assigning state (qi ,qj) to an accepting state iff average of simple cycles passing

through qi is lesser than that of simple cycles passing through qj .

Clearly, this procedure is incomplete. Whenever it successfully compares the

limit average of two words, it returns the correct result, however, it may also fail to

compare limit average of words even though they are well defined. As an example

consider the SCC demonstrated in Figure 5.2. The SCC is discarded since the

average along simple cycles is different: it is 0 for one, and 1 for the other.

5.4 Summary

This chapter introduces the concept of ω-regular comparator for aggregate func-

tions over infinite length number sequences. An ω-regular comparator for the

aggregate function is a Büchi automaton that accepts a pair of sequences (A,B) iff

f (A) < f (B). Our motivation for investigating this problem arises from the game-

theoretic setting in which comparison of rewards is crucial.

We have succeeding in constructing anω-regular comparator for the discounted

sum aggregate function. We also present partial results, and core insights gained

while attempting to do the same for the limit-average comparator.

71

Chapter 6

Concluding remarks

This chapter summarizes the main contributions of this thesis. The chapter con-

cludes with a brief discussion of some directions to pursue for future research.

6.1 Summary

Multi-agent systems consisting of agents with self-objectives can model various

real life interactions ranging from simplistic two-agent systems like tic-tac-toe,

to massive online protocols like online auctions etc. An agent in these systems is

said to be rational if it interacts in a manner to fulfill its objectives. Computation of

rational behavior of agents is paramount to analyze properties of these systems. As

these systems become more elaborate and the number of agents increase, analysis

of these systems becomes more and more difficult. This necessitates the need for

the development of algorithmic techniques for computation of rational behavior

in systems.

In game-theoretic terms, these systems are called games. This thesis focuses on

repeated games. These are simultaneous, non-zero sum games, with infinite repe-

tition over bounded rationality. Agent objective in repeated games is to maximize

the quantitative reward it receives from a game. Rational agents are said to be in

Nash equilibrium if no agent can increase its reward from the game by changing

its own behavior only. This thesis focuses on the computation of Nash equilibria

in repeated games.

The first contribution of this thesis is to identify a class of repeated games

which permit the computation of Nash equilibria: regular repeated games. In sum-

72

mary, a regular repeated game in a finite-state machine based model for repeated

games. Here every agent has a finite number of strategies, which are given by

finite-state, weighted, non-deterministic, transducers, where the inputs are actions

taken by other agents, and outputs are the agent’s actions. Weights on transitions

denote the reward received by the agent. Agent strategies synchronize on their

actions in a game, and the reward on an executions is given by the discounted sum

of rewards on transitions.

The main contribution of this thesis is an algorithm ComputeNash that com-

putes all Nash equilibria in a regular repeated game. For deterministic games, it

runs in time polynomial in the size of the game, while it runs in exponential time

in size of the game for non-deterministic games.

The crux of the algorithm lies in determining whether a strategy profile is in

Nash equilibria or not. For this, the crucial technical step is to compare rewards

earned by agents from infinite executions of the game. Technically, this problem

reduces to the following: Given two weighted Büchi automata, where the aggre-

gate is given by the discounted sum. How do you compare the weight of every

executions on one automata with those on the other.

We address this relational reasoning problem via a novel automata-theoretic

construction: ω-regular comparator. An ω-regular comparator is a Büchi automa-

ton that accepts a pair of number sequences (A,B) iff the discounted sum on A is

lesser than that on B. While various problems related to quantitative languages

have been explored earlier, the problem of comparing two quantitative words has

not been explored yet. In this thesis, we construct an comparator automaton for

the discounted sum aggregate function, and provide an exploratory discussion on

one for the limit-average comparator. The most interesting outcome of ω-regular

comparators is that they reduce a quantitative problem of comparing the aggre-

gate on two sequences into a qualitative problem of determining Büchi acceptance

condition for a language over infinite words.

73

To demonstrate the practical utility of our approach, we compute Nash equi-

libria in various repeated games: versions of the iterated prisoner’s dilemma, re-

peated auctions, and the Bitcoin protocol. Our computations corroborate with

previously known results on these games. Furthermore, we were able to perform

automated analysis of more complex games such as the Bitcoin protocol, bymodel-

ing it as a regular repeated game. Together, these case studies exhibit the promise

of our approach for automated algorithmic analysis of repeated games.

6.2 Future directions

We discuss directions for future research below:

6.2.1 Exploration of ω-regular comparator

The problem of comparing aggregate of sequences has not been explored within

the field of quantitative languages and weighted automata. From a practical point

of view, ω-regular comparators reduce the quantitative problem of comparing the

aggregate on two sequences into a qualitative problem of determining Büchi ac-

ceptance condition for a language over infinite words. We believe, this indicates

that there may exist a relationship between quantitative and qualitative reason-

ing. Hence, indicating potential for applications in quantitative verification. We

believe exploring this relationship can be an interesting direction to purse in itself.

From a more theoretical point of view, the concrete question here is to de-

termine for which aggregate functions it is possible to construct an ω-regular

comparator. Some commonly used aggregate function are limit average, liminf,

limsup, sup, inf, etc. A construction of the comparator when it exists, and a proof

of impossibility/undecidability when it doesn’t will improve our understanding of

the aggregate functions and the boundaries of ω-regular comparators.

74

6.2.2 Extension of regular repeated games

This thesis considers the analysis of Nash equilibria in repeated games with finitely

many agents. The regular repeated games framework can be enriched in numerous

ways. One such extension is by allowing an agent to have infinitely many strate-

gies. Such agents may exists in games in which agents dynamically build new strate-

gies from previously existing ones. While each strategy may still be represented

as a finite state machine, it is not clear how to obtain a succinct representation for

all infinitely many strategies of the agent. One proposal could be to shift from the

machine-view of strategies to a tree-view of strategies. Under this representation,

the set of all strategies could be represented as a language of strategy trees.

In the current model for regular repeated games, uncertainty is modeled with

non-determinism. Another way to model uncertainly is via probability. A proba-

bilistic model of a strategy extends the proposed model by assigning a probability

distribution to transitions from each state in the strategy machine. This distribu-

tion denotes the probability with which an agent chooses a transition from each

state.

These proposed extensions of regular repeated games may have implications

on algorithms for the analysis. Therefore, the design of algorithms for Nash equi-

libria, dominant strategy, best response strategy, subgame-perfect equilibria etc

offers immense scope for research in this direction.

6.2.3 Frameworks for other games

Evolutionary games [31] appear in the context of evolutionary biology, gene analysis

etc. Evolutionary games differ from repeated games in two major ways: (1). The

number of agents in an evolutionary game change with time (2). In evolutionary

games agents do not explicitly make decisions. We illustrate this point through an

example. Consider an initial population of small beetles and large beetles. Here

the strategies are either to be a large beetle, or to a small beetle. Note that the

75

size of a beetle is a genetic behavior, hence beetles can not make this decision. The

notion of rationality in evolutionary games is evolutionary stability. Intuitively, it

corresponds to those strategies that thrive even after a long period of time. These

differences in the modeling and analysis of such games indicate that they might

not fall under the framework of regular repeated games.

The modeling and analysis of evolutionary games pose an interesting challenge

for future research. One proposal to model evolutionary games could be by using a

weighted version of Petri nets. A population protocol can be thought of as a vector

addition system (or alternatively, a Petri net) defined over non-negative integers

with transitions between vectors. Every state in a pert-net will correspond to the

number of species adhering to a strategy. For example, number of large beetles,

and the number of small beetles. Weights correspond to the quantitative measure

of the fitness of each species in a state.

76

Bibliography

[1] Dilip Abreu, David Pearce, and Ennio Stacchetti. Toward a theory of dis-

counted repeated games with imperfect monitoring. Econometrica, pages

1041–1063, 1990.

[2] Dilip Abreu and Ariel Rubinstein. The structure of nash equilibrium in re-

peated games with finite automata. Econometrica, pages 1259–1281, 1988.

[3] Shaull Almagor, Udi Boker, and Orna Kupferman. What?s decidable about

weighted automata? In Automated Technology for Verification and Analysis,

pages 482–491. Springer, 2011.

[4] Garrett Andersen and Vincent Conitzer. Fast equilibrium computation for

infinitely repeated games. In Proc. of AAAI, pages 53–59, 2013.

[5] Robert J. Aumann. Survey of repeated games. Essays in game theory and math-

ematical economics : in honor of Oskar Morgenstern, pages 11–42, 1981.

[6] Christel Baier, Nathalie Bertrand, and Marcus Grösser. Probabilistic au-

tomata over infinite words: Expressiveness, efficiency, and decidability.

[7] Christel Baier, Joost-Pieter Katoen, et al. Principles of model checking, volume

26202649. MIT press Cambridge, 2008.

[8] Jeffrey S Banks and Rangarajan K Sundaram. Repeated games, finite au-

tomata, and complexity. Games and Economic Behavior, 2(2):97–117, 1990.

[9] David Basanta, Haralambos Hatzikirou, and Andreas Deutsch. Studying the

77

emergence of invasiveness in tumours using game theory. The European Phys-

ical Journal B, 63(3):393–397, 2008.

[10] Elchanan Ben-Porath. Repeated games with finite automata. Journal of Eco-

nomic Theory, 59(1):17–32, 1993.

[11] Kimmo Berg and Mitri Kitti. Computing equilibria in discounted 2× 2 su-

pergames. Computational Economics, 41(1):71–88, 2013.

[12] Kimmo Berg, Mitri Kitti, et al. Equilibrium paths in discounted supergames.

Technical report, Working paper, 2012.

[13] Udi Boker and Thomas A. Henzinger. Exact and approximate determiniza-

tion of discounted-sum automata. Logical Methods in Computer Science, 10(1),

2014.

[14] Udi Boker, Thomas A. Henzinger, and Jan Otop. The target discounted-sum

problem. In Proc. of LICS, pages 750–761, 2015.

[15] Patricia Bouyer, Romain Brenguier, Nicolas Markey, and Michael Ummels.

Nash equilibria in concurrent games with büchi objectives. In Proc. of

FSTTCS, pages 375–386, 2011.

[16] Thomas Brihaye, Véronique Bruyère, and Julie De Pril. On equilibria in

quantitative games with reachability/safety objectives. Theory Comput. Syst.,

54(2):150–189, 2014.

[17] Andriy Burkov and Brahim Chaib-draa. An approximate subgame-perfect

equilibrium computation technique for repeated games. In Proc. of AAAI,

pages 729–736, 2010.

[18] Colin Camerer. Behavioral game theory. New Age International, 2010.

78

[19] Krishnendu Chatterjee, Laurent Doyen, and Thomas A Henzinger. Quantita-

tive languages. ACM Transactions on Computational Logic, 11(4):23, 2010.

[20] Krishnendu Chatterjee and Thomas A Henzinger. A survey of stochastic ω-

regular games. Journal of Computer and System Sciences, 78(2):394–413, 2012.

[21] Swarat Chaudhuri, Sriram Sankaranarayanan, and Moshe Y. Vardi. Regular

real analysis. In Proc. of LICS, pages 509–518, 2013.

[22] Xi Chen and Xiaotie Deng. 3-nash is PPAD-complete. In Electronic Colloquium

on Computational Complexity, volume 134, 2005.

[23] Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of

computing two-player nash equilibria. Journal of the ACM, 56(3):14:1–14:57,

2009.

[24] AndrewMColman. Game theory and its applications: in the social and biological

sciences. Psychology Press, 2013.

[25] Vincent Conitzer and Tuomas Sandholm. New complexity results about nash

equilibria. Games and Economic Behavior, 63(2):621–641, 2008.

[26] Mark B Cronshaw. Algorithms for finding repeated game equilibria. Compu-

tational Economics, 10(2):139–168, 1997.

[27] Constantinos Daskalakis, Paul W Goldberg, and Christos H Papadimitriou.

The complexity of computing a nash equilibrium. SIAM Journal on Comput-

ing, 39(1):195–259, 2009.

[28] Yevgeniy Dodis, Shai Halevi, and Tal Rabin. A cryptographic solution to a

game theoretic problem. In Advances in Cryptology, pages 112–130, 2000.

[29] Manfred Droste and Paul Gastin. Weighted automata and weighted logics.

Theoretical Computer Science, 380(1):69–86, 2007.

79

[30] Manfred Droste, Werner Kuich, and Heiko Vogler. Handbook of weighted au-

tomata. Springer, 2009.

[31] David Easley and Jon Kleinberg. Networks, crowds, and markets: Reasoning

about a highly connected world. Cambridge University Press, 2010.

[32] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining

is vulnerable. In Financial Cryptography and Data Security, pages 436–454.

Springer, 2014.

[33] James W Friedman. Game theory with applications to economics. Oxford Uni-

versity Press New York, 1990.

[34] Joseph Y Halpern and Rafael Pass. Algorithmic rationality: Game theory with

costly computation. Journal of Economic Theory, 156:246–268, 2015.

[35] Kenneth L Judd, Sevin Yeltekin, and James Conklin. Computing supergame

equilibria. Econometrica, pages 1239–1254, 2003.

[36] Miroslav Klimoš, Kim G Larsen, Filip Štefaňák, and Jeppe Thaarup. Nash

equilibria in concurrent priced games. In Proc. of LATA, pages 363–376.

Springer, 2012.

[37] Michael L Littman and Peter Stone. A polynomial-time nash equilibrium

algorithm for repeated games. Decision Support Systems, 39(1):55–66, 2005.

[38] George J. Mailath and Larry Samuelson. Repeated games and reputations: Long-

running relationships. Oxford University Press, 2006.

[39] Matthieu Manceny, A Lackmy, C Chettaoui, F Delaplace, and Cours Mon-

seigneur Romero. Application of game theory to gene networks analysis.

2005.

80

[40] Robert E. Marks. Repeated games and finite automata. Recent Developments

in Game Thoery, pages 43–64, 1992.

[41] Nimrod Megiddo and Avi Wigderson. On play by means of computing ma-

chines. In Theoretical aspects of reasoning about knowledge, pages 259–274,

1986.

[42] Paul R Milgrom and Robert J Weber. A theory of auctions and competitive

bidding. Econometrica, pages 1089–1122, 1982.

[43] Mehryar Mohri. Finite-state transducers in language and speech processing.

Computational linguistics, 23(2):269–311, 1997.

[44] Mehryar Mohri. Weighted automata algorithms. In Handbook of weighted

automata, pages 213–254. Springer, 2009.

[45] James D Morrow. Game theory for political scientists. Princeton University

Press Princeton, NJ, 1994.

[46] Herve Moulin. Game theory for the social sciences. NYU press, 1986.

[47] John Nash. Non-cooperative games. Annals of mathematics, pages 286–295,

1951.

[48] Abraham Neyman. Bounded complexity justifies cooperation in the finitely

repeated prisoners’ dilemma. Economics letters, 19(3):227–229, 1985.

[49] Abraham Neyman. Finitely repeated games with finite automata. Mathemat-

ics of Operations Research, 23(3):513–552, 1998.

[50] Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay Vazirani. Algorithmic

game theory. Cambridge University Press, 2007.

[51] Martin J Osborne and Ariel Rubinstein. Bargaining and markets. Academic

press, 1990.

81

[52] Martin J Osborne and Ariel Rubinstein. A course in game theory. MIT press,

1994.

[53] Christos H Papadimitriou and Mihalis Yannakakis. On complexity as

bounded rationality. In Proc. of STOC, pages 726–733, 1994.

[54] Michele Piccione and Ariel Rubinstein. Finite automata play a repeated ex-

tensive game. Journal of Economic Theory, 61(1):160–168, 1993.

[55] Michael O Rabin. Probabilistic automata. Information and control, 6(3):230–

245, 1963.

[56] Robert W Rosenthal. A class of games possessing pure-strategy nash equilib-

ria. International Journal of Game Theory, 2(1):65–67, 1973.

[57] Ariel Rubinstein. Finite automata play the repeated prisoner’s dilemma. Jour-

nal of Economic Theory, 39(1):83–96, 1986.

[58] Walter Rudin. Principles of mathematical analysis, volume 3. McGraw-Hill

New York, 1964.

[59] Herbert A Simon. A behavioral model of rational choice. The quarterly journal

of economics, pages 99–118, 1955.

[60] Goal. GOAL. http://goal.im.ntu.edu.tw/wiki/.

[61] Rabit-Reduce. Rabit-reduce. http://www.languageinclusion.org/.

[62] Wolfgang Thomas, Thomas Wilke, et al. Automata, logics, and infinite games:

a guide to current research, volume 2500. Springer Science & Business Media,

2002.

[63] Ming-Hsien Tsai, Seth Fogarty, Moshe Y Vardi, and Yih-Kuen Tsay. State

of büchi complementation. In Proc. of CIAA, volume 10, pages 261–271.

Springer, 2010.

http://goal.im.ntu.edu.tw/wiki/
http://www.languageinclusion.org/

82

[64] Amparo Urbano and Jose E Vila. Computational complexity and communi-

cation: Coordination in two–player games. Econometrica, 70(5):1893–1927,

2002.

[65] Adrian Vetta. Nash equilibria in competitive societies, with applications to

facility location, traffic routing and auctions. In Foundations of Computer Sci-

ence, 2002. Proceedings. The 43rd Annual IEEE Symposium on, pages 416–425.

IEEE, 2002.

[66] John Von Neumann and Oskar Morgenstern. Theory of games and economic

behavior. Princeton university press, 2007.

[67] Jörgen W Weibull. Evolutionary game theory. MIT press, 1997.

	Abstract
	List of Illustrations
	Introduction
	Equilibria computation in repeated games
	Contributions
	Organization

	Preliminaries
	Game-theoretic concepts
	Repeated Games
	Solution concepts

	Automata-theoretic concepts
	Finite automata
	Büchi automata
	Weighted Büchi transducer

	Regular Repeated Games
	Regular repeated games
	Comparison with the Rubinstein model
	Solution concepts
	Size of repeated regular games

	Summary

	Computing Equilibria
	Prior work
	Computing Nash equilibria
	ComputeNash algorithm description
	Analysis of ComputeNash
	Best response strategy

	Experimental results
	Iterated Prisoner's Dilemma (IPD)
	Bitcoin Protocol

	Summary

	-Regular Comparator
	Prior work
	Discounted sum comparator
	Limit average comparator
	Summary

	Concluding remarks
	Summary
	Future directions
	Exploration of -regular comparator
	Extension of regular repeated games
	Frameworks for other games

	Bibliography

