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Abstract. Existing solution approaches for problems in formal quantitative analysis su�er from two chal-
lenges that adversely impact their theoretical understanding and large-scale applicability. These are the lack
of generalizability, and separation-of-techniques. Lack of generalizability refers to the issue that solution ap-
proaches are often specialized to the underlying cost model that evaluates the quantitative property. Di�erent
cost models deploy such disparate algorithms that there is no transfer of knowledge from one cost model
to another. Separation-of-techniques refers to the inherent dichotomy in solving problems in quantitative
analysis. Most algorithms comprise of two phases: A structural phase, which reasons about the structure of
the quantitative system(s) using techniques from automata or graphs; and a numerical phase, which reasons
about the quantitative dimension/cost model using numerical methods. These techniques are incompatible
with one another, forcing the phases to be performed sequentially, thereby impacting scalability.
The dissertation [6] contributes towards a novel framework that addresses the aforementioned challenges.
The introduced framework, called comparator automata or comparators in short, builds on automata-theoretic
foundations to generalize across a variety of cost models. The crux of comparators is that they enable automata-
based methods in the numerical phase, hence eradicating the dependence on numerical methods. In doing so,
comparators are able to integrate the structural and numerical phases. On the theoretical front, we demon-
strate that comparator-based solutions have the advantage of generalizable results, and yield complexity-
theoretic improvements over a range of problems in quantitative analysis. On the practical front, we demon-
strate through empirical analysis that comparator-based solutions render more e�cient, scalable, and robust
performance, and demonstrate broader applicability than traditional methods for quantitative reasoning.

1 Quantitative analysis

Formal methods are being touted to advance assured autonomy by obtaining rigorous guarantees on
computational systems from the high-level descriptions of their desired properties. Through diligent
research e�orts of the past several decades, the qualitative reasoning of logical properties that describe
temporal behaviors, safety, liveness and so on have attained industrial-scale adoption. The notion of
correctness in logical properties is, however, Boolean. The demands of current applications are that
system properties become richer and more complex, for which new formal methods techniques have
to be developed. Recently, quantitative properties of systems have emerged in importance across di-
verse applications. For instance, reinforcement learning-enabled policies are learned from rewards,
motion-planning tasks are resource aware, multi-agent protocols consist of utility-maximizing agents,
etc. These properties can reason about aspects such as quality measures, cost- and resource- consump-
tion, distance metrics and the like, which logical properties cannot easily express. For example, whether
an arbiter grants every request is a logical property; But the promptness with which an arbiter grants
requests is a quantitative property. The analysis of quantitative properties of computing systems, or
quantitative analysis in short, is an emerging area in automated formal analysis. Its applications are
wide-ranging, from probabilistic guarantees on hardware or software [4,24,25] to planning for robots
with resource-constraints [23], with hard and soft constraints where the soft constraints are expressed
quantitatively [26,28] to generating plans of higher quality [2,14]. Yet, quantitative analysis is far be-
hind in scalability to meet the demands of its emerging applications.

1.1 Challenges in quantitative analysis

This dissertation begins with identifying two broad challenges that obstruct the theoretical under-
standing and algorithmic development in quantitative analysis, thus limiting their scalability.

Challenge 1. Lack of generalizability refers to the issue that solution approaches of problems in
quantitative analysis are specialized to the underlying cost model which assigns real-valued measures
to the quantitative property of interest. Di�erent cost models deploy disparate techniques to solve. This
disparity prohibits the transfer of knowledge of solving problems over one cost model to another cost
model. Furthermore, owning to the large variety of cost models, soon it will become too cumbersome
to digest progress made across cost models.



As a concrete demonstration of the lack of generalizability, consider the problem of quantitative in-
clusion over weighted ω-automata. Weighted ω-automaton [22] are a well-established, �nite-state (quan-
titative) abstraction used to model quantitative systems. An execution is an in�nite sequence of labels
that arise from an in�nite sequence of subsequent transitions. Weighted ω-automata assign a real-
valued cost to all executions over the machine using a cost model f : Zω → R. The cost of an execu-
tion is assigned by applying the cost model f to the weight-sequence arising from transitions along
the execution. In case the transition relation is non-deterministic, each execution may have multiple
runs. In these cases, the cost of the execution is resolved by taking the in�mum/supremum of cost of
all its runs. Quantitative inclusion is a fundamental problem on weighted ω-automata that formalizes
the goal to compare between two given weighted ω-automata.

De�nition 1 (Quantitative inclusion). Given two weighted ω-automata P and Q over the same cost
model f : Zω → R, quantitative inclusion over f , or f -inclusion in short, denoted by P ⊆f Q, asks
whether for every execution, its cost in P is less than (or equal to) its cost in Q.

Thus, quantitative inclusion can be seen as a quantitative generalization of language inclusion over
Büchi automata which forms the basis of model-checking over temporal properties.

The lack of generalizability is apparent from the complexity-theoretic results. While quantitative
inclusion is PSPACE-hard, there is ample variance in upper bounds. Quantitative inclusion is PSPACE-
complete under limsup/liminf [17] and undecidable for limit-average [21]. For discounted-sum (DS),
currently even decidability is unknown. In the special case of integer discount factors, DS inclusion
is EXPTIME [15,17]. For the decidable problems, even the algorithms are very varied. Limsup/Liminf-
inlcusion is solved by examination of maximum weight of cycles [16], while under DS inclusion for
integer discount factors combines subset-construction and linear-programming [3].
Question. Can one develop a unifying theory for quantitative analysis that generalizes across a
variety of cost models?

Challenge 2. Separation-of-techniques refers to the inherent dichotomy in solving problems in
quantitative analysis. Most algorithms comprise of two phases: A structural phase, which reasons about
the structure of the quantitative system(s) using techniques from automata or graphs; and a numeri-
cal phase, which reasons about the quantitative dimension/cost model using numerical methods. The
techniques used in both phases are incompatible and di�cult to combine. This adversely a�ects the
scalability and applicability of these algorithms.

A concrete instance of this appears in planning under resource constraints against an adversary.
This situation can be formulated as a two-player quantitative graph game, or quantitative game in short.
In these games, players take turns to pass a token along the transition relation between the states. As
the token is pushed around, the play accumulates costs along the transitions using the underlying cost
model f : Zω − R. One player attempts to maximize the cost, while the other player minimizes it.

De�nition 2 (Solving quantitative games). A quantitative game can be solved in two ways:

Optimization problem Generate a strategy which computes the optimal cost from all plays of the game.
Satis�cing problem Given a threshold value v ∈ Q, the problem is to determine whether the mini-

mizing (or maximizing) player has a strategy that ensures the cost of all resulting plays is lower (or
greater) than the threshold v.

De�nition 3 (Solving quantitative gameswith qualitative objectives).Given a quantitative game
and a qualitative objective, to solve it means to generate a policy that solves the quantitative game (via
optimization or satis�cing) and ensures every resulting play satis�es the qualitative objective.

Separation-of-techniques appears in solving quantitative games with qualitative objectives since
quantitative games are solved with numerical methods such as mix-max optimization, while qualita-
tive objective solves with automata-based methods. For most cost-models, it is known that solutions
satisfying a qualitative objective will not be optimal.
Question. Can one design an integrated approach for quantitative analysis that combines the two
phases as opposed to separation-of-techniques? Will the approach be e�cient and scalable?



2 Contributions

This dissertation contributes towards a novel theoretical framework that addresses both of the chal-
lenges, and demonstrates utility on problems of quantitative inclusion and solving quantitative games.
The introduced framework, called comparator automata or comparators in short, builds on automata-
theoretic foundations to generalize across a variety of cost models. The crux of comparators is that
they substitute the numerical analysis phase with automata-based methods, and hence naturally o�er
an integrated method for quantitative analysis. In all, we show that comparator-based algorithms have
the advantages of generalizable results, yield complexity-theoretic and algorithmic advances, render
practically scalable solutions, and broaden the applicability of quantitative reasoning.

2.1 Comparator automata

The dissertation takes the view that many classic questions in formal methods can be seen as involving
comparisons between di�erent system runs or inputs. For instance, the classical model checking prob-
lem of verifying if a system S satis�es a linear-time temporal speci�cation P [20]. Traditionally, this
problem is phrased language-theoretically: S and P are interpreted as sets of (in�nite) words, and S is
determined to satisfy P if S ⊆ P . The problem, however, can also be framed in terms of a comparison
between words in S and P . Suppose a word w is assigned a weight of 1 if it belongs to the language
of the system or property, and 0 otherwise. Then determining if S ⊆ P amounts to checking whether
the weight of every word in S is less than or equal to its weight in P [5].

The ubiquity of comparisons is more pronounced in quantitative analysis: Firstly, because every
system execution is assigned a real-valued cost. W.l.o.g, we can assume that the cost model is an ag-
gregate function f : Zω → R. The cost of an execution is the value of f applied to the weight-sequence
of the execution; Secondly, because problems in quantitative analysis reduce to comparing the cost
of executions to a constant value (such as in quantitative games), or more generally to the cost of
another execution (as in quantitative inclusion). Thus, the dissertation takes the view that the com-
parison of costs of system executions with the costs on other executions is the fundamental operation
in quantitative reasoning, and hence that should be brought to the forefront. To this end, we intro-
duce comparator automata (comparators, in short), a class of automata that read pairs of in�nite weight
sequences synchronously and compare their aggregate values in an online manner [10].

De�nition 4 (Comparator automata [10]). A comparator automata for aggregate function f , rela-
tion R, and upper bound µ > 0 is an automaton that accepts a pair (A,B) ∈ (Σ ×Σ)ω of sequences of
bounded integers, whereΣ = {−µ, µ− 1, . . . , µ}, i� f(A) R f(B), where R ∈ {>,<,≥,≤, 6==} is an
inequality or equality relation.

The dissertation lays the foundations of comparator automata. It undertakes an investigation of ω-
regular comparators which refer to comparators that are �nite-state and accept by the Büchi condition:

Theorem. [10,11] 1. Comparators for limsup, liminf, discounted-sum (DS) with integer dis-
count factors, and ω-regular functions [19] are ω-regular. When the upper bound µ is repre-
sented in unary, the size of these comparators is polynomial in µ.
2. Comparators for limit-average and DS with non-integer discount factors are not ω-regular.
3. ω-regular comparators are closed under set-theoretic operations.

The advantage of ω-regular comparators is that they yield generalizable solutions to a variety of
problems in quantitative analysis for all aggregate functions that permit an ω-regular comparators.
Furthermore, they resolve the issue of separation-of-techniques by substituting the numerical phase
with automata-based operations obtained from using the comparator. Thus, with ω-regular compara-
tors, problems in quantitative analysis are reduced to problems in qualitative analysis, as shown below:



Theorem. [10] Let the underlying aggregate function permit ω-regular comparators. Then,

1. Quantitative inclusion reduces to language inclusion in polynomial time.
(a) Quantitative inclusion over aggregate functions with ω-regular comparators is

PSPACE-complete in size of the input weighted automata and the comparator
automaton.

2. Solving the satis�cing problem on quantitative games with perfect and imperfect
information reduces to solving (non-quantitative) graph games with perfect or imperfect
information, respectively, in polynomial time.

The above results renders a recipe for generalizable algorithms for the two problems. A crucial
feature is that these algorithms are also e�cient, since the reductions are polynomial in size of the
inputs and the comparator automata. In fact, in speci�c problems, we demonstrate that comparator-
based algorithms result in complexity-theoretic and algorithmic advances, as detailed below.

2.2 Quantitative inclusion over discounted-sum

Quantitative inclusion over the discounted-sum aggregation function, or DS inclusion in short, has
been shown to have applications in the analysis of rational-behaviors in multi-agent systems, where
discounted-sum is used to compute agent rewards [1,7]. Yet it is not used in practice since the decid-
ability of DS inclusion is unknown. This has been an open problem for more than 15 years now. In the
special case where the discount factor is an integer, the problem is known to have an EXPTIME upper
bound and a PSPACE lower bound. Hence, its exact complexity is unknown.

Comparator-based arguments make resolutions towards both of these questions:
Theorem. 1. For integer discount factors, DS inclusion is PSPACE-complete [10].
2. For non-integer discount factors„ a co-recursively-enumerable, anytime algorithm for DS in-
clusion (over �nite-length words) can be designed with comparator-based methods [12].

The �rst result follows from comparator-based reduction of quantitative inclusion since compara-
tors for discounted-sum, called DS comparators henceforth, are ω-regular for integer discount fac-
tors. This resolves the open question w.r.t integer discount factors while also o�ering an integrated
algorithm for the same. The merit of this integrated approach is highlighted through an empirical
comparison of the comparator-based solution with prior known separation-of-techniques approaches.
The analysis demonstrates that despite having poorer worst-case complexity, the comparator-based
algorithm outperforms the later [9]. Furthermore, since all intermediate operations are derived from
automata-based reasoning, comparators present a unique opportunity to implore language-theoretic
properties to boost algorithmic performance of problems in quantitative analysis. In particular, we
show that DS comparators are safety or co-safety languages [13]. This is used to replace the notori-
ously non-performant step of Büchi complementation [27] in the comparator-based algorithm for DS
inclusion with subset-construction, resulting in improvements in algorithmic performance across the
board [13].

The second result makes in-roads to solve DS inclusion for non-integer discount factors for practical
purposes as opposed to resolving its unknown decidability. To this end, we design an anytime algorithm
for DS inclusion, which guarantees to either terminate with a crisp boolean answer to whether DS
inclusion holds or generates a tighter approximation of DS inclusion as time elapses [12]. Over �nite-
sequence semantics, the algorithm is also guaranteed to terminate on all false input instances, making
it co-recursively enumerable. A part of the challenge is that DS comparators are known to not be ω-
regular for non-integer discount factors. To this end, we prove that for non-integer discount factors,
approximations of DS permit ω-regular comparators [12]. These comparators are then used to design
the said algorithm. To the best of our knowledge, this is the �rst practical algorithm for the problem.

The study of the DS inclusion problem with comparator-based algorithms exhibits how compara-
tors may lead to complexity-theoretic as well as algorithmic advances to DS inclusion. The properties
of comparators utilized in the exploration of DS inclusion are as follows:
Theorem. 1. For integer discount factors, DS comparators are safety or co-safety automata [13].
2. For non-integer discount factors, comparators for approximations of DS are ω-regular [12].

This encourages the evaluation of comparator-based solutions on other classes of problems in quan-
titative reasoning in order to obtain a well-rounded perspective on the impact of comparators.



2.3 Quantitative games over discounted-sum

Quantitative games over the discounted-sum aggregation function, DS games in short, �nds applica-
tions in decision-making domains such as planning and reactive synthesis. Here the quantitative prop-
erties describe soft constraints such as quality measures [14], cost and resources [23,26], rewards [29],
and the like. Due to the application domain, often times DS games are also accompanied with a hard
qualitative constraint expressed by a temporal goal. Since the quantitative constraints are soft, it suf-
�ces to generate solutions that are good enough w.r.t. the quantitative property, i.e., generate a satis-
�cing solution. Yet, the most common form of analysis of DS games is via the optimization problem.
The issue is that it is proven that solutions which are both optimal and satisfy a temporal goal may not
exist [18], thus limiting the applicability of DS games. In addition, we prove that solution to the opti-
mization problem via the celebrated approach of Value-iteration (VI) is expensive: On a DS game with
|V | states and |E| transitions, VI takesΘ(|V |2) iterations, and solves inO(|V |2 · |E|) andO(|V |4 · |E|)
under the unit-cost and bit-cost models of arithmetic, respectively. A naive algorithm for the satis�cing
problem goes through solving the optimization problem. However, both the limitations of optimization
transcend to satis�cing by this method.

A comparator-based argument solves satis�cing and alleviates both of these issues:
Theorem. [8] 1. For integer discount factors, satis�cing problem on DS games reduces to solv-
ing a safety or reachability game. The resulting algorithm is O(|V | + |E|) where V and E are
the sets of states and transitions, respectively, of the DS game.
2. For integer discount factors, solving the satis�cing problem over DS games with temporal
objectives reduces to solving a parity game.

The reduction to safety or reachability games is a consequence of the safety/co-safety property of
DS comparators. As was the case for DS inclusion, the resulting algorithm is purely automata-based.
Since temporal objectives are also solved using automata methods, the solutions of comparator-based
satis�cing and satisfying the temporal objective can be seamlessly integrated. In this case, it reduces
to solving a parity game, where the objective is, intuitively, the combined objective of quantitative and
qualitative constraints. We also demonstrate the e�cacy through empirical evaluations which shows
that comparator-based solutions are scalable, e�cient, and robust in performance.

In ongoing work, we are extending these result to non-integer discount factors. For that, we solve
a notion of approximate satis�cing which makes use of the ω-regular comparators for approximation
of DS for non-integer discount factors. We are applying these techniques to planning with soft quan-
titative constraints and hard qualitative constraints under adversarial environments in robotics.

3 Concluding remarks and future work

This dissertation introduces and begins the investigation of comparator automata. Through the inves-
tigation of ω-regular comparators and their impact on DS inclusion and DS games, we establish that
comparator automata are a promising technique to mitigate some of the challenges posed by traditional
quantitative reasoning. In terms of techniques, they bridge quantitative reasoning with qualitative rea-
soning, and creates a channel by which the former can bene�t from the advances in the later. We believe
this dissertation has opened a new direction of research - the application of automata-based methods in
quantitative reasoning. There are several directions for future work, few of which are described below:

Theory of comparator automata The dissertation has begun the theory of comparator automata,
but several questions remain unanswered. For instance, what are the necessary and su�cient condi-
tions for an aggregate function to permit ω-regular comparators? The study of comparators which
are not ω-regular is completed untapped. Since we are aware of aggregate function which do not
permit ω-regular comparators, these questions are of interest to the theory of comparators.

Applications to probabilistic domains and reinforcement learning (RL) The issue of
separation-of-techniques has been identi�ed in the formal reasoning of Markov Decision
Processes (MDPs) especially when they are combined with rewards or qualitative objectives [24].
MDPs with discounted-rewards are increasing in importance due to their relevance to RL. The
question here is whether one could use DS comparators for formal reasoning of RL or RL-enabled
policies by facilitating the incorporation of temporal goals.
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