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ABSTRACT

KEYWORDS: Probabilistic Model Checking ; Symbolic Algorithms ; Maximal
End Components ; Markov Decision Processes ; Binary Decision
Diagrams

The model checking problem takes as input a model and a specification, and outputs whether
the model satisfies the specification. Probabilistic model checking deals with input models
that are probabilistic, e.g., Markov Chains (MCs) and Markov Decision Processes (MDPs). A
fundamental algorithmic problem arising in probabilstic model checking is the Maximal End
Component (MEC) decomposition of an MDP, with applications including LTL verification
and learning-based verification of MDPs. To deal with the state-space explosion problem,
modern probabilistic model checkers often use a symbolic representation of MDPs, leading
to a need for symbolic algorithms.

We present a novel symbolic algorithm, called INTERLEAVE, for the MEC Decomposition of
an MDP. For an input MDP with n vertices and m edges, the theoretically-fastest algorithm
takes Õ(n1.5) symbolic operations and Õ(

√
n) symbolic space. INTERLEAVE is theoretically

slower, taking O(n2) symbolic operations and O(log n) symbolic space. However, a previous
empirical evaluation has shown that the theoretical improvements in worst-case number
of symbolic operations do not translate to empirical improvements in running time. We
implement INTERLEAVE in the STORM probabilistic model checker and perform an experimental
evaluation on the Quantitative Verification Benchmark Set. We compare it to previous
symbolic MEC Decomposition algorithms (excluding one which doesn’t work on the same
representation, but was shown to be no faster than another previously), and show that it solves
19 more benchmarks than the closest previous algorithm given the same timeout. Among the
ones that both can solve, we demonstrate a 2.24x average speedup in decomposition time.
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Chapter 1

Introduction

Model checking is used to verify (algorithmically) if a model, representing a system, satisfies
a specification. Models and specifications can be of various types. For instance, probabilis-
tic model checking handles probabilistic models, including Discrete Time Markov Chains
(DTMCs) and Markov Decision Processes (MDPs), among others. Specifications can include,
for example, safety, reachability or liveness properties. In probabilistic systems, the notion of
satisfaction may be quantitative instead of qualitative, e.g., the probability that an execution
is safe, or reaches a certain state. In this work, we will focus on a fundamental task in MDPs,
namely Maximal End Component (MEC) Decomposition, which finds application in the
verification of multiple types of specifications. The book, Principles of Model Checking by
Baier and Katoen [BK08], provides a comprehensive overview of model checking, including a
chapter (chapter 10) on probabilistic model checking.

MDPs consist of states with non-deterministically chosen actions and next states chosen
from a probability distribution [Put14]. This makes them a popular choice for modelling
systems with both non-determinism and stochasticity. MDPs are widely used to model
and solve control problems in stochastic systems [FV96] and planning problems in artificial
intelligence [Put14]. In the verification world, they are used to represent randomised
distributed algorithms (e.g. leader election, with a coin-toss used to break symmetry), model
systems with presence of hardware failure or message loss, and to evaluate their reliability
and performance using these models [BK08].

Maximal End Components (MECs) of an MDP are, informally, portions of the MDP which are
strongly connected, and where it is possible (if you choose the right actions) to loop infinitely
often. The MEC Decomposition problem is a central algorithmic problem in probabilistic
model checking [BK08]. It is a part of the core of two leading tools in probabilistic verification
- STORM [HJK+22] and PRISM [KNP11], and has proven useful for a wide variety of problems.
Some of them are:

• Almost-sure (with probability 1) reachability sets can be computed in linear time given
the MEC decomposition [CDHL16].

• MEC Decomposition is a required pre-processing step in the verification of MDPs
with respect to ω-regular properties [BK08]. The maximum or minimum satisfaction
probabilities are equal to the max/min reachability probabilities of accepting MECs in
a product MDP.

• MEC Decomposition is required to ensure convergence in interval iteration for computing
maximum reachability probabilities [HM18, BKL+17]. Interval iteration ensures that
the convergence criterion gives a bound on the approximation, and allows an analysis
of the convergence rate, both of which are key drawbacks of the popular value iteration
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technique.

• applying learning algorithms to verification requires MEC decomposition computation
[KPR18].

As the systems being represented become more complex, the number of states and actions in
the MDP quickly explodes and places more demands on both memory and time. Explicit
algorithms, which store and process each state individually, become infeasible when working
with, e.g., billions of states, simply because of the requirement to construct the state space.
Symbolic model checking aims to represent large systems compactly by exploiting structure
and regularity, often using Binary Decision Diagrams (BDDs) [Lee59, Ake78, Bry85, Bry92].
In probabilistic systems, Multi-Terminal BDDs (MTBDDs) are used to exploit the structure
of MDPs and get an efficient compact representation. After BDD-based model checking
had been successful in non-probabilistic systems, the paper, "Symbolic Model Checking of
Probabilistic Processes using MTBDDs and the Kronecker Representation" (2000) [KNP02]
proposed symbolic techniques for probabilistic model checking and implemented them in
an early version of PRISM. They continue to be an important part of probabilistic model
checkers like STORM and PRISM.

The use of MTBDDs to represent MDPs created a need for symbolic algorithms, which
did not have explicit access to the model, but could only access it through the MTBDDs.
As the above mentioned applications of MEC Decomposition show, it is a fundamental
algorithm for probabilistic model checking, and thus, developing symbolic algorithms for it
is an important endeavour. In this thesis, we add an algorithm of our own to this category.
We will now briefly survey related work and previous algorithms, followed by a summary of
our contributions and the structure of this thesis.

1.1 Related Work
We will broadly mention related work on explicit MEC decomposition algorithms, symbolic
MEC and SCC decomposition algorithms, and experimental evaluation of symbolic MEC
decomposition algorithms. Here, and for the rest of the thesis, when talking about the
complexity of algorithms for an MDP, we will use n to be the number of states plus the
number of actions (sometimes called the number of vertices of an MDP), and m to be the
number of possible state-action-next state triples plus the number of state-enabled action
pairs (sometimes called the number of edges of an MDP). These correspond to the number
of edges and vertices in the GVBA representation of an MDP (which we will introduce in
subsection 2.1.3), and mention complexity using these to maintain consistency with previous
work.

Explicit MEC Decomposition: The classical algorithm for this was given by deAlfaro
in his PhD Thesis [Alf98] and takes O(n.m) operations in the worst-case [CH14]. This

© 2024, Indian Institute of Technology Delhi
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bound was improved to O(m
√

m) in [CH11] by introducing a lockstep search based on
the depth-first search algorithm for SCC decomposition given by Tarjan [Tar72]. [CH14]
gives an O(n2) operations algorithm, while [CDHS19] gives an Õ(m) expected-operations
randomised algorithm. In [WKB14], Wijs et al show that an implementation of the basic
O(n2) algorithm on a GPU can empirically show significant speedups when compared to a
CPU-based implementation.

Symbolic SCC Decomposition: The SKELETON [GPP03] algorithm (symbolically)
performs the SCC Decomposition of a graph with n vertices in O(n) number of symbolic
steps. This is also provably optimal [CDHL17]. SKELETON is used as a component of previous
symbolic MEC decomposition algorithms, and it served as the inspiration for our algorithm.
The CHAIN [LSS+23] algorithm is a simplified version of SKELETON, taking O(n) symbolic
steps and O(log n) symbolic space.

Symbolic MEC Decomposition: There are three previous symbolic MEC decomposition
algorithms.

1. The first is a symbolic implementation of the classical explicit algorithm in [Alf98]. We
will refer to it as the NAIVE algorithm. NAIVE requires O(n2) symbolic operations and
O(log n) symbolic space, given an O(n) symbolic operations (and O(log n) symbolic
space) SCC decomposition algorithm (like SKELETON) [CHL+18].

2. Based on the explicit algorithm from [CH11], Chatterjee et al introduce a symbolic
version of lockstep search, and, using it, a symbolic MEC decomposition algorithm in
[CHL+18] that requires O(n

√
m) symbolic operations and O(

√
m) symbolic space. We

will refer to this algorithm as LOCKSTEP.

3. In [CDHS21], Chatterjee et al break the worst-case O(n2) symbolic operations bound
by providing a parameterised algorithm that focuses on detecting and collapsing ECs
quickly. Given an 0 < ϵ ≤ 1/2, the algorithm requires Õ(n2−ϵ) symbolic operations
and Õ(nϵ) symbolic space. Setting ϵ = 0.5, they give an Õ(n

√
n) symbolic operations

and Õ(
√

n) symbolic space algorithm. We will refer to this algorithm as COLLAPSING.

Table 1.1 below summarises these results, and also includes the algorithm we present in this
thesis (called INTERLEAVE).

Algorithm Symbolic Operations Symbolic Space

NAIVE O(n2) O(log n)

LOCKSTEP O(n
√

m) O(
√

m)

COLLAPSING Õ(n
√

n) Õ(
√

n)

INTERLEAVE O(n2) O(log n)

Table 1.1: Symbolic Algorithms for MEC Decomposition : Theoretical Complexity

Experimental Evaluation of Symbolic MEC Decomposition: To the best of our

© 2024, Indian Institute of Technology Delhi
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knowledge, Faber’s Bachelor Thesis [Fab23b] is the only previous empirical comparison of the
different symbolic MEC decomposition algorithms. We have used their implementations (with
minor bug-fixes) from [Fab23a] and added an implementation of INTERLEAVE for performing
our experimental evaluation.

1.2 Contributions of this Thesis
In summary, we make the following contributions:

1. We present a novel symbolic algorithm, called INTERLEAVE, for the MEC Decomposition
of an MDP. While all previous algorithms perform multiple SCC Decomposition
calls during their execution, the key idea in our algorithm is to interleave the MEC
computation with the work that a single SCC Decomposition call would do. The
algorithm requires O(n2) symbolic operations and O(log n) symbolic space for an MDP
with n vertices and m edges.

2. We provide an implementation of the INTERLEAVE algorithm in the STORM probabilistic
model checker. The implementation follows the format of [Fab23a], and is available at
https://github.com/Ramneet-Singh/storm-masters-thesis/tree/stable.

3. We perform an experimental evaluation of INTERLEAVE, comparing it to the NAIVE and
LOCKSTEP algorithms on 379 benchmarks from the Quantitative Verification Benchmark
Set (QVBS) [HKP+19]. We do not compare it to COLLAPSING since it works on a
different graph-based representation than the one STORM uses [Fab23b]. However,
[Fab23b] showed that even after converting the representations, NAIVE performed
better than COLLAPSING on QVBS. Hence, our experimental evaluation shows that
INTERLEAVE is the empirically fastest symbolic MEC Decomposition algorithm on
QVBS, solving 19 more benchmarks than the closest other algorithm (NAIVE) given
the same timeout (240 seconds) and achieving an average speedup of 2.24x on the ones
that both were able to solve.

1.3 Structure of the Thesis
The first chapter introduces the MEC Decomposition problem along with its applications,
surveys related work and existing algorithms, and summarises the contributions of the thesis.
We then formally define a few preliminaries, including MDPs, MECs, the graph structures of
an MDP and BDDs in the second chapter. Chapter 3 outlines how an MDP is stored – using
sparse or symbolic data structures, in contemporary probabilistic model checkers like STORM.
Chapter 4 introduces symbolic algorithms, explains the key idea behind the NAIVE, followed
by a detour into the symbolic SCC Decomposition algorithm SKELETON and how it led to the
INTERLEAVE algorithm. The chapter ends with a correctness proof and complexity analysis
of INTERLEAVE. In Chapter 5, we present our experimental evaluation of INTERLEAVE on
the QVBS and analyse its runtimes and number of symbolic operations in comparison to
the NAIVE and LOCKSTEP algorithms. Finally, Chapter 6 concludes the thesis, highlighting
opportunities for future work.

© 2024, Indian Institute of Technology Delhi
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Chapter 2

Preliminaries

We begin with defining MDPs and stating our assumptions, then define MECs (with other
required notions), followed by concepts like attractor, which are used in MEC Decomposition
algorithms. We then define two graph-based representations of MDPs, and end with a note
on BDDs. In subsection 2.1.1, we also show that the MEC of a state in an MDP, if it exists,
is unique (lemma 2.1), ensuring that the problem we are tackling is well-defined.

2.1 MDPs and MECs

2.1.1 Basic Definitions

Definition 2.1 (MDP). A (finite) MDP M is given by a four-tuple (S, A, dinit, δ) where S

is a finite set of states, A is a finite set of actions, dinit : S → [0, 1] is an initial probability
distribution over states (so Σs∈Sdinit(s) = 1), and δ : S×A×S → [0, 1] specifies the next-state
distributions for each state and each action (so Σs′∈Sδ(s, α, s′) ∈ {0, 1} for all s ∈ S, α ∈ A).

Figure 2.1 shows an example MDP. The example has been borrowed from Christel Baier’s
excellent slides on probabilistic model checking for MDPs [Bai17]. The probabilities are
omitted where there is only one possible next state for a state and action. For this MDP,
S = {s0, s1, s2, s3, s4, s5, s6, s7, s8} and A = {α, β, γ, δ, σ}. The dinit is omitted (since MECs
do not depend on it), and δ, for e.g., maps (s0, α, s1) to 1

2 and (s5, β, s6) to 1
4 .
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Figure 2.1: An Example MDP

For the remainder of this section, let M = (S, A, dinit, δ) be an MDP.

Definition 2.2 (Enabled Actions). We say that an action α ∈ A is enabled in state s ∈ S

if Σs′∈Sδ(s, α, s′) = 1 (or, equivalently, if ∃s′ ∈ S . δ(s, α, s′) > 0). For an action set A′ ⊆ A

and state s ∈ S, the set of actions in A′ which are enabled in s is denoted by A′[s].

We make the following two assumptions about the MDPs we consider.

Assumption. Every state has at least one enabled action, i.e., A[s] ̸= ∅ for all s ∈ S.

Assumption. Every action is enabled in some state, i.e., ⋃
s∈S A[s] = A.

Now we will define maximal end components, the core of the problem we are trying to solve,
i.e., the MEC Decomposition of an MDP.

Definition 2.3 (sub-MDP). A sub-MDP of M is a pair (T, π) where ∅ ̸= T ⊆ S and
π : T → 2A such that:

• ∅ ≠ π(s) ⊆ A[s] for all s ∈ T .

• For all s ∈ T, α ∈ π(s) and s′ ∈ S, if δ(s, α, s′) > 0, then s′ ∈ T .

Definition 2.4 (State-Action Pair Set of a sub-MDP). Let (T, π) be a sub-MDP. We define
its state-action pair set, denoted sa(T, π) as

sa(T, π) = {(s, α) ∈ T × A | α ∈ π(s)}

Definition 2.5 (Inclusion of sub-MDPs). A sub-MDP (T1, π1) ofM is said to be included in

© 2024, Indian Institute of Technology Delhi
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another sub-MDP (T2, π2) of M, denoted (T1, π1) ⊆ (T2, π2) if T1 ⊆ T2, and, for each s ∈ T1,
π1(s) ⊆ π2(s).

Definition 2.6 (Reachability in an MDP). A path of length n ∈ N from a state s ∈ S to a
state s′ ∈ S in an MDPM is given by states s0, s1, . . . , sn ∈ S and actions α0, . . . , αn−1 ∈ A

such that s0 = s, sn = s′, and δ(si, αi, si+1) > 0 for all i ∈ {0, . . . , n− 1}. We say that s ∈ S

reaches s′ ∈ S in M if there exists a path in M from s to s′.

Definition 2.7 (Reachability in a sub-MDP). Let (T, π) be a sub-MDP ofM. We say that a
state s ∈ T can reach a state s′ ∈ T in (T, π) if there is a path s0α0s1α1 . . . sn−1αn−1sn inM
from s to s′ such that si ∈ T for all i ∈ {0, . . . , n} and αi ∈ π(si) for all i ∈ {0, . . . , n− 1}.

Definition 2.8 (End Component (EC)). A sub-MDP (T, π) is called an end component of
M if for all s, t ∈ T , s can reach t in (T, π).

As an illustration, figure 2.2 shows the end components in the example MDP from figure
2.1. All the states inside each box form an end-component. For each state, the set of actions
which cannot take it outside the end component is included.

Figure 2.2: End Components in an Example MDP

The yellow end component is included in the blue one. In other words, it is not a maximal
end component. We define it formally below.

Definition 2.9 (Maximal End Component (MEC)). An end component (T, π) of an MDP
M is called a maximal end component of M if it is maximal with respect to sub-MDP
inclusion, i.e., there is no end component (T ′, π′) of M such that (T, π) ⊆ (T ′, π′) and
(T, π) ̸= (T ′, π′).
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Figure 2.3 shows the maximal end components of the example MDP from figure 2.1.

Figure 2.3: Maximal End Components in an Example MDP

We will now show that the MEC each state (and thus, each state-action pair) is in, if it
exists, is unique. This ensures that the MEC Decomposition of an MDP is well-defined and
unique.

Lemma 2.1 (Uniqueness of MEC). Every state (and thus, every state-action pair) belongs
to at most one MEC.

Proof. Proof is by contradiction. Assume, if possible, that there is a state s ∈ S and distinct
maximal end components (T1, π1) and (T2, π2) such that s ∈ T1 and s ∈ T2. Consider the
pair (T, π), defined as T = T1 ∪ T2 and

π(s′) =


π1(s′) if s′ ∈ T1 \ T2

π2(s′) if s′ ∈ T2 \ T1

π1(s′) ∪ π2(s′) otherwise

We will show that (T, π) is a sub-MDP, and, in fact, an end component ofM. To see why it
is a sub-MDP, note the following:

• Since (T1, π1) and (T2, π2) are ECs (and therefore sub-MDPs), we have ∅ ̸= π1(s′) ⊆
A[s′] for all s′ ∈ T1 and ∅ ≠ π2(s′) ⊆ A[s′] for all s′ ∈ T2. Now, for all s′ ∈ T = T1 ∪ T2,
π(s′) is either π1(s′) (s′ ∈ T1 in this case), π2(s′) (s′ ∈ T2 in this case) or π1(s′)∪ π2(s′)
(s′ ∈ T1 ∩ T2 in this case). Thus we have ∅ ≠ π(s′) ⊆ A[s′].

• Consider any s′ ∈ T, α ∈ π(s′), t ∈ S such that δ(s′, α, t) > 0. If s′ ∈ T1 \ T2 (resp.
T2 \ T1), then since (T1, π1) (resp. (T2, π2)) is a sub-MDP, t ∈ T1 (resp. T2), and thus

© 2024, Indian Institute of Technology Delhi



2.1 MDPs and MECs 9

in T1 ∪ T2. Otherwise, if s′ ∈ T1 ∩ T2, then α ∈ π1(s′) or α ∈ π2(s′). In either case,
because s′ ∈ T1, s′ ∈ T2 and (T1, π1), (T2, π2) are sub-MDPs, t ∈ T1 ∪ T2.

Take any s1, s2 ∈ T1 ∪ T2. We have the following three cases:
• If s1, s2 ∈ T1, then since (T1, π1) is an EC, s1 can reach s2 in (T1, π1). Since T1 ⊆ T1∪T2

and π1(s′) ⊆ π(s′)∀ s′ ∈ T1, this implies s1 can also reach s2 in (T1 ∪ T2, π).

• Similarly, if s1, s2 ∈ T2, then since (T2, π2) is an EC, s1 can reach s2 in (T2, π2). Since
T2 ⊆ T1∪T2 and π2(s′) ⊆ π(s′)∀ s′ ∈ T2, this implies s1 can also reach s2 in (T1∪T2, π).

• Wlog, suppose s1 ∈ T1 and s2 ∈ T2. Then, since s ∈ T1 and (T1, π1) is an EC, there
is a path from s1 to s using only states from T1 and actions from π1. Similarly, since
s ∈ T2 and (T2, π2) is an EC, there is a path from s to s2 using only states from T2 and
actions from π2. The concatenation of these is a path from s1 to s2 using only states
from T1 ∪ T2 and actions from π. Thus, s1 can reach s2 in (T1 ∪ T2, π).

Since (T1, π1) and (T2, π2) are distinct, (T, π) must strictly include one of them. But we have
shown that (T, π) is an end component of M, which contradicts the fact that (T1, π1) and
(T2, π2) are maximal end components.

Definition 2.10 (MEC of a state and a state set). For any state s ∈ S, if it’s part of an
MEC, denote the MEC of s (unique by lemma 2.1) by MECM(s). For a set of states S ′ ⊆ S,
let MECsM(S ′) be the set of MECs of all states in S ′ which have an MEC.

2.1.2 Algorithmic Concepts

We define the notion of an MEC-closed sub-MDP below. Informally, these are pieces of the
original MDP for which MEC computation can be done independently. This will be useful
for the correctness proof of our algorithm.

Definition 2.11 (MEC-closed sub-MDP). A sub-MDP (T, π) is called MEC-closed if for
every state s ∈ T , MECM(s), if it is defined, satisfies MECM(s) ⊆ (T, π).

We now define some concepts which will be used by our algorithm. The ROut of a state set has
been used for multiple previous symbolic MEC Decomposition algorithms [CHL+18, CDHS21].
It is usually computed for a state set that you know is strongly connected, and gives the
state-action pairs that can take you out of the state set. As we will show in the correctness
proof for our algorithm, these state-action pairs cannot be part of any MEC, and thus can
be discarded.

Definition 2.12 (ROut of a state set in a sub-MDP). Let (T, π) be a sub-MDP and S ′ ⊆ T .
ROut(T,π)(S ′) ("random-out" of S ′ in (T, π)) is defined as the set of state-action pairs in
(T, π) which can go outside S ′. Formally,

ROut(T,π)(S ′) = {(s, α) ∈ S ′ × A | α ∈ π(s) ∧ ∃s′ ∈ (T \ S ′) . (δ(s, α, s′) > 0)}
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Next, we define the attractor of a state-action pair set in a sub-MDP. This has also been
used in previous algorithms [CHL+18, CDHS21]. It is meant to be called on the ROut of
a strongly-connected state set. The idea is that if for a state, its pairs with all its enabled
actions can’t be part of an MEC, then the state can’t be either. Similarly, if a state-action
pair leads to a state that can’t be part of an MEC, then that state-action pair can’t be part
of the MEC either. Thus, as an optimisation, not only can the ROut be removed, but its
attractor can be removed when considering a strongly-connected state set. We will state and
prove all of this formally in the correctness proof for our algorithm.

Definition 2.13 (Attractor of a state-action pair set in a sub-MDP). Let (T, π) be a
sub-MDP and X ⊆ sa(T, π) be a state-action pair set. The attractor of X in (T, π) is defined
as, Attr(T,π)(X) = (S ′, X ′) = (⋃

i∈N Si,
⋃

i∈N Xi), where
• (S0, X0) = (∅, X)

• For i ≥ 0,
– Si+1 = Si ∪ {s ∈ T | ∀α ∈ π(s) . ((s, α) ∈ Xi)}.

– Xi+1 = Xi ∪ {(s, α) ∈ sa(T, π) | ∃ s′ ∈ Si . (δ(s, α, s′) > 0)}.

2.1.3 Graph Representations of MDPs

While writing both algorithms and code that deals with MDPs, it is often helpful to think
of them as graphs. There are two popular graph-based representations of an MDP, one
primarily used in the symbolic MEC decomposition algorithms literature, and one used in
probabilistic model checkers like STORM. In both these representations, we will see that the
transition probability value is abstracted away, and it only matters whether the probability
is 0 or > 0. Such an abstraction is possible for a few MDP tasks, like reachability analysis
and MEC decomposition. In probabilistic model checkers, the transition probabilities are
stored, but there is a way to access this abstract representation for tasks that can make do
with it. We will elaborate on how MDPs are stored in the next chapter.

In the GEBA representation (Edge-Based Actions), the vertices are the states of the
MDP. For each triple (s, α, t) such that δ(s, α, t) > 0, there is a labelled, directed edge from s

to t, with label α.

Definition 2.14 (GEBA(M) representation for M). The edge-based actions graphical
representation for the MDPM = (S, A, dinit, δ) is given by GEBA(M) = (V, E) where V = S

and E = {(s, α, s′) ∈ S × A× S | δ(s, α, s′) > 0}.

In fact, we can (and will) represent sub-MDPs as graphs too.

Definition 2.15 (GEBA(T, π) representation for sub-MDP (T, π)). The edge-based actions
graphical representation for the sub-MDP (T, π) is given by GEBA(T, π) = (V, E) where
V = T and E = {(s, α, s′) ∈ T × A× T | (α ∈ π(s) ∧ δ(s, α, s′) > 0)}.

In the GVBA representation (Vertex-Based Actions), each state and each action of
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the MDP has a corresponding vertex. For each pair of state s and enabled action α ∈ A[s],
• there is a directed edge from s to α, and

• for each state t such that δ(s, α, t) > 0, there is a directed edge from α to t.

Definition 2.16 (GVBA(M) representation for M). Let M = (S, A, dinit, δ) be an MDP.
Assume, without loss of generality, that for all distinct states s, t ∈ S (s ̸= t), their enabled
actions are distinct, i.e., A[s] ∩ A[t] = ∅. The vertex-based actions graphical representation
for the MDP M is given by GVBA(M) = (V, E) where:

• V = VP ∪ VR, where VP = S are called the player-one vertices, and VR = A are called
the random vertices.

• E = {(s, α) ∈ S × A | α ∈ A[s]} ⋃ {(α, t) ∈ S × A | ∃ s ∈ S . (δ(s, α, t) > 0)}.

Figure 2.4 shows both the representations for an MDP, to illustrate their differences. The
example has been borrowed from Faber’s (also excellent) thesis [Fab23b].

(a) Original MDP M

(b) Edge-Based Actions Graph Representa-
tion GEBA(M)

(c) Vertex-Based Actions Graph Representa-
tion GVBA(M)

Figure 2.4: Different representations (2.4b : Edge-Based Actions and 2.4c : Vertex-Based
Actions) of the same original MDP 2.4a
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In this thesis, we will use the GEBA graph representation for an MDP, for the following two
reasons:

1. The two leading probabilistic model checkers (STORM and PRISM) use the edge-based
actions representation for efficiency reasons. Creating a separate vertex (with its own
separate edges too) for each action in an MDP is infeasible. Therefore, by using this
representation for our algorithm, it becomes easier to implement inside a real model
checker (as we have done).

2. The vertex-based actions representation requires an assumption that no two states in
an MDP share an action. In practice, this assumption doesn’t hold. It is infeasible
to make all actions distinct, and so they are reused whenever possible. While the
assumption simplifies algorithm design and analysis, we believe it isn’t needed for our
algorithm, and thus, we don’t make it.

We will often be interested in the predecessors and successors in the graph (V, E) for a set
V ′ ⊆ V . Formally, these are defined as:

Definition 2.17 (Pre(V,E)(.) and Post(V,E)(.)). Let (V, E) = GEBA(T, π) for some sub-MDP
(T, π). Then, for any set V ′ ⊆ V , define:

Post(V,E)(V ′) = {v2 ∈ V | ∃v1 ∈ V ′, α ∈ A . ((v1, α, v2) ∈ E)}
Pre(V,E)(V ′) = {v1 ∈ V | ∃v2 ∈ V ′, α ∈ A . ((v1, α, v2) ∈ E)}

In practice, we may pre-convert the labelled edge relation E to an unlabelled one (say, E ′)
and then use that for each call Pre(V,E)(.) or Post(V,E).

Remark. Note on Algorithm Complexity Notation: When we talk about the complexity
of different symbolic algorithms, we will say things like, "for an MDP with n vertices and m

edges, this algorithm requires O(n2) symbolic operations". Here, the vertices and edges refer
to the GVBA representation. In other words, n = |S|+ |A| and m = |{(s, α, t) ∈ S ×A× S |
δ(s, α, t) > 0}| (not exactly the number of edges in GVBA but Θ(·) of that). The prior
literature ([CHL+18, CDHS21]) uses this notation and we stay with it to avoid confusion.

Having seen how MDPs are viewed as graphs, the next chapter will explain how they are
stored in model checkers. Before we do that, we will take a detour and provide a brief
explanation of Binary Decision Diagrams – the tools typically used for symbolically storing
MDPs.
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2.2 Binary Decision Diagrams

2.2.1 Definition

Binary Decision Diagrams are data structures that can represent arbitrary boolean-valued1

functions whose input is a sequence of boolean variables. They were first developed for logic
circuit modelling [Lee59, Ake78], but have been critical to the success of symbolic model
checking, so critical, in fact, that the Model Checking Handbook has a chapter dedicated to
them [CG18].

A BDD on n boolean variables x1, . . . , xn represents a function f : {0, 1}n → {0, 1}. Formally,
a BDD is a Directed Acyclic Graph such that:

• There is a unique root node.

• Each non-terminal node is labelled with a variable from {x1, . . . , xn}.

• Each terminal node is labelled with a 0 or 1.

• Each non-terminal node has only two outgoing edges, labelled 0 and 1.

In order to get a value of f at a point (b1, . . . , bn), you start at the root node, and, until you
reach a terminal node, repeat:

• Suppose the non-terminal node is labelled with variable xi. If bi = 0, take the edge
labelled 0, otherwise take the edge labelled 1.

The value of the terminal node you reach gives the function’s value at that point.

2.2.2 Reduced and Ordered BDDs

It is trivial to come up with a binary decision tree for f(x1, . . . , xn). For example, with n = 3
and f(x1, x2, x3) = ((¬x2) ∨ x3), it might look like figure 2.5.

x1

x2 x2

x3 x3 x3 x3

1 1 0 1 1 1 0 1

0 1

0 1 0 1

1

0 1 0 1 0 1 0 1

Figure 2.5: Example (unreduced) BDD for f(x1, x2, x3) = ((¬x2) ∨ x3)

This is, however, not the most efficient representation. Reduced binary decision diagrams
aim to improve this. To reduce a BDD, you take the following steps:

1. Remove duplicate terminals: Merge all 0 terminal nodes into a single node, and all
1 terminal nodes into a single node.

1and, with slight changes, integer or real-valued too
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2. Remove redundant tests: If the 0 and 1 outgoing edges for a node go to the same
subgraph, then remove that node.

3. Remove duplicate nodes: If the subgraphs headed at two different nodes are
identical, then merge them into a single node.

Efficient algorithms exist in practice to perform reduce(B) in O(|B|. log |B|) time. After
reducing the earlier BDD for f(x1, x2, x3) = ((¬x2) ∨ x3), we would get the reduced BDD in
figure 2.6.

x2

1 x3

0 1

0 1

0 1

Figure 2.6: Example Reduced BDD for f(x1, x2, x3) = ((¬x2) ∨ x3)

Reduced Ordered BDDs (ROBDDs) further impose an ordering on the variables. Given an
ordering x1, . . . , xn, there is no path in a Reduced Ordered BDD where a node labelled with
xi is followed by a node labelled with xj and j <= i. Given an ordering, there is a unique
ROBDD for a boolean function, and the choice of ordering can have significant impacts on
the size of the ROBDD [HR04].

2.2.3 Operations on ROBDDs

Some basic operations on ROBDDs are:
• Binary logical operations on the functions reprsented by them. For example, if Bf and

Bg are the ROBDDs representing functions f and g, then apply(◦, Bf , Bg) outputs
the reduced ordered BDD representing f ◦ g (here ◦ could be any binary operation on
{0, 1} like ∨,∧ etc.).

• restrict(b, x, Bf ) computes the ROBDD for f [b/x], where b ∈ {0, 1}.

• exists(x, Bf ) computes the ROBDD for ∃x . f .

The following table (figure 2.7) from Huth and Ryan’s book on Logic In Computer Science
[HR04] summarises their complexities.

Figure 2.7: Summary of Basic Operations on ROBDDs and their Time Complexities (Source
: [HR04])

Apart from this, we will use a few more operations on ROBDDs, which include:
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• (Inverse) Relational product: Let S ⊆ U be a subset of some set U and R ⊆ U × U
be a binary relation on U . Suppose fS and fR are the boolean functions representing
S and R (we will elaborate on how sets and relations are represented as boolean
functions in the next chapter). Then, the relational product of S with R yields the set
S ′ = {s′ ∈ U | ∃ s ∈ S . (s, s′) ∈ R}, and the inverse relational product of S with R
is the set S ′′ = {s′ ∈ U | ∃ s ∈ S . (s′, s) ∈ R}. The (resp. inverse) relational product
operation on ROBDDs takes ROBDDs representing fS and fR and returns the ROBDD
representing fS′ (resp. fS′′).

• Cardinality: When representing a set S using a boolean function fS and representing
that through an ROBDD BfS

, we sometimes want to know the size of S. For the
ROBDD, this is equivalent to counting the number of satisfying assignments to its
variables.

Finally, we would like to mention that with some changes, BDDs need not be restricted to
boolean-valued functions. Multi-Terminal BDDs, also called Algebraic DDs (ADDs) are DDs
where the terminal nodes may have integer or real values [BFG+97, FMY97]. MTBDDs
support additional operations like addition, multiplication etc.
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Chapter 3

Sparse and Symbolic MDP Storage

We have seen how MDPs can be represented as graphs, and how binary decision diagrams
can represent boolean functions. In this chapter, we will combine the two and explain how
MDPs are stored symbolically using BDDs in probabilistic model checkers. For the sake of
completeness, we will also cover how they are stored explicitly, using sparse data structures.
Since our algorithm will use relatively higher-level operations (like Pre, Post), we hope that
this chapter gives a peek into how they are implemented in practice.

We assume an MDP M = (S, A, dinit, δ). We will show how both sparse and symbolic
structures support storing and modifying vertices, edges and actions of the GVBA and GEBA

representations. We will also explain how Pre(V,E)(V ′) and Post(V,E)(V ′) can be implemented.
As we remarked earlier, the transition probability values do not matter for the task of MEC
decomposition, it only matters if they’re non-zero or not. However, we will mention how
they are stored too, for the sake of completeness. The descriptions are based on the STORM
model checker [HJK+22] and on chapter 4 of Faber’s thesis [Fab23b].

3.1 Sparse Storage
In the sparse style of storage, each state and transition is stored explicitly. For representing
a set of vertices of a graph (whether GVBA or GEBA) with n vertices, a bitvector of size n can
be stored, with the i-th bit indicating whether the i-th vertex is in the set or not. Basic set
operations like intersection, union and complementation can be done using the corresponding
logical operations of and, or, not on these bitvectors. Additionally, in the case of GVBA, each
vertex needs to have one bit that indicates whether it is a player-1 vertex or a random vertex.

For GVBA, the edges can be stored using an n × n transition matrix T , where (T )ij ̸= 0
indicates that si has an edge to sj. If si is a player-1 vertex, then (T )ij ∈ {0, 1} indicates
whether the action represented by sj can be chosen from state si. Otherwise, si is a random
vertex (representing an action, say, α), and (T )ij ∈ [0, 1] represents a transition probability.
Note that since GVBA assumes that no two states share an action, there is a unique state s

for which (T )ij = δ(s, α, sj).

For GEBA, two vertices may have multiple edges between them (labelled with different
actions). So it isn’t enough to store one value for each pair of vertices. Instead, the transition
matrix T here has n "row groups", one for each vertex (equivallent to state in GEBA). The row
group for state s ∈ S has |A[s]| rows, i.e., one row for each enabled action in s. Supposing s

is numbered i, α is numbered a (note that action numbering starts from 0 for each state, so
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in GEBA, actions are shared by multiple states, which we had mentioned when discussing
the reasons for choosing this representation), and t is numbered j, to get δ(s, α, t) for
s, t ∈ S, α ∈ A[s], you look at the a-th row in the i-th row group, and get its j-th element.

For both graph-like structures, the transition matrices of most MDPs are sparsely populated,
but their size grows quadratically with the number of states of the MDP. Due to this, most
implementations employ sparse matrices, in which only non-zero elements are stored.

(a) Transition Matrix for GVBA(M) (b) Transition Matrix for GEBA(M)

Figure 3.1: Transition Matrices for (3.1a : Vertex-Based Actions and 3.1b : Edge-Based
Actions) (Source: Faber’s Thesis [Fab23b])

Given a graph (V, E) and a vertex set V ′ ⊆ V , to implement Post(V,E)(V ′) for GVBA (resp.
GEBA), we process each vertex v′ ∈ V ′ individually, and store all non-zero columns of the
corresponding row (resp. row group) of T . Similarly, to implement Pre(V,E)(V ′) for GVBA

(resp. GEBA), we store all the non-zero rows (resp. row groups) of the corresponding column.

For both Pre and Post, and both graph structures GVBA and GEBA, storing vertices and
edges individually is not scalable. The computation required scales (at least) linearly with
the size of V ′ since each vertex is processed individually. Large MDPs can consist of billions
of states with thousands of SCCs, and simply storing them can become infeasible due to
memory requirements. These problems lead us to the idea of symbolic storage.

3.2 Symbolic Storage
Symbolic storage provides an alternative to handling vertices and edges individually – you
deal with entire sets of vertices or edges at once. So the interface is different, and more
restrictive (you can’t access a single vertex’s edges directly). But in exchange, we get
scalability. This is done through BDDs.

Assume that the number of vertices in the graph structure we are dealing with (whether
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GVBA or GEBA) is n. Then, each vertex can be encoded into a t = ⌈log2 n⌉ bit-vector (plus
one bit in the case of GVBA to indicate if it’s in VP or VR, but we ignore that for simplicity),
and a set V ′ ⊆ V can be represented as a boolean function on t boolean variables x1, . . . , xt:

fV ′ : {0, 1}t → {0, 1} fV ′( x1, . . . , xt︸ ︷︷ ︸
encodes s ∈ V

) =
1 if s ∈ V ′

0 otherwise

fV ′ can be represented by a BDD, and that is how we store sets of vertices symbolically.

For GVBA, a set of edges can be encoded into an ADD, representing the transition matrix.
The ADD takes a set of Boolean arguments for the source vertex si ∈ V (row) and another
set of Boolean arguments for the destination vertex sj ∈ V (column) of an edge. If the ADD
evaluates to a non-zero value, then an edge from si to sj exists, and if si ∈ VR, sj ∈ VP ,
then the ADD evaluates to a probability given by δ. For the computation of MECs, all that
matters is whether the value is non-zero or not, hence this ADD can be converted to an
(often smaller) BDD, representing the following boolean function:

tVBA(x1, . . . , xt︸ ︷︷ ︸
s ∈ V (Row)

, x′
1, . . . , x′

t︸ ︷︷ ︸
s′ ∈ V (Column)

) =
1 if (s, s′) ∈ E

0 otherwise

Note that tVBA can be represented by a BDD on 2t variables, and that it represents a binary
relation E on V . Hence, we can compute Post(V,E)(V ′) (resp. Pre(V,E)(V ′)) by taking the
(resp. inverse) product of V ′ (or the ROBDD representing fV ′) with E (or the ROBDD
representing tV BA).

GEBA is not just a directed graph, it is a directed labelled graph (with the labels being
actions of the MDP). Therefore, we will need more boolean variables y1, . . . , yu to encode
actions. Since we will never really deal with just actions alone, only with state-action pairs,
we do not need to encode all |A| actions, so it suffices to have u = ⌈log2 maxs∈S |A[s]|⌉. Note
that this way of encoding also allows (and encourages) different states to share actions, so
that the BDD size is smaller.

tEBA(x1, . . . , xt︸ ︷︷ ︸
s ∈ V (Row)

, y1, . . . , yu︸ ︷︷ ︸
α ∈ A[s] (Action)

, x′
1, . . . , x′

t︸ ︷︷ ︸
s′ ∈ V (Column)

) =
1 if (s, α, s′) ∈ E

0 otherwise

To compute Post(V,E)(V ′) or Pre(V,E)(V ′), we convert the labelled directed edge relation to a
directed edge relation E ′ and compute its relational or inverse relational product with V ′. In
BDD-land, this can be done using an exists operation, i.e.,

t′
EBA(x1, . . . , xt, x′

1, . . . , x′
t) = ∃ {y1, . . . , yu} . tEBA(x1, . . . , y1, . . . , yu, xt, x′

1, . . . , x′
t)

© 2024, Indian Institute of Technology Delhi



3.2 Symbolic Storage 19

As we mentioned before, at the cost of a more complex interface and implementation,
the major benefit of symbolic storage is its scalability: as Pre(V,E)(V ′) and Post(V,E)(V ′)
operations are performed on BDDs, all elements of V ′ ⊆ V are processed at once. Further,
it has been shown that space efficient representations of structured probabilistic models can
be constructed using MTBDDs [dAKN+00]. So, BDDs can often represent larger sets of
vertices and edges than would be feasible with explicit storage.

However, BDDs are not without their drawbacks. Firstly, as shown by [BK08], no single
data structure can compactly represent all boolean functions, so there are classes of MDPs
for which the sizes of the BDDs are very large (as large as the memory required by explicit
storage). Secondly, as we mentioned in chapter 2, the size of each BDD is also heavily
influenced by the chosen boolean variable ordering. While finding the optimal ordering (and
even improving a given ordering) for a given Boolean function is NP-hard (see [BW96]),
various heuristics exist, depending on the problem being modelled. For transition functions,
an interleaved ordering x1, x′

1, [y1, ] . . . , xt, x′
t, [yt, yt+1, . . . , yu] tends to yield good results

[EFT91].
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Chapter 4

Symbolic MEC Decomposition Algorithms

In this chapter, we aim to build the INTERLEAVE algorithm from the NAIVE symbolic MEC
decomposition algorithm and the SKELETON symbolic SCC decomposition algorithm. We will
begin by formalising what "symbolic algorithms" mean, then explain the NAIVE algorithm,
followed by a detour to the SKELETON algorithm. Since the SKELETON algorithm is what
inspired the creation of INTERLEAVE, we will see how it leads naturally to the INTERLEAVE
algorithm. We will then formally prove its correctness and do a complexity analysis.

4.1 Symbolic Algorithms Formalism

4.1.1 Definition

We have seen that in symbolic storage, MDPs are not represented explicitly during their
analysis. Instead, they are implicitly represented using data structures like BDDs. "Symbolic
algorithms" is a theoretical model for algorithms that work on this implicit representation,
that abstracts away the specifics of the representation and implementation [CDHS21]. A
symbolic algorithm is allowed to use the same mathematical, logical and memory access
operations as a regular RAM algorithm, except for the access to the input graph. It is not
given an adjacency list or an adjacency matrix, but can only access the input graph through
two types of symbolic operations:

1. One-step operations Pre and Post: Each predecessor Pre (resp. successor Post) opera-
tion is given a set X of vertices and returns the set of vertices with an edge to (resp.
from) some vertex of X.

2. Basic set operations: Each basic set operation is given one or two sets of vertices or
edges and performs a union, intersection, or complement on these sets.

4.1.2 Symbolic Time and Space Complexity

Since symbolic operations are more expensive than non-symbolic operations, symbolic time
is defined as the number of symbolic operations in a symbolic algorithm. As in previous
literature [CHL+18, CDHS21], we focus only on the number of Pre/Post operations in
a symbolic algorithm. This is due to two reasons. First, the basic set operations are
computationally less expensive (as they typically deal with only one set of state and action
variables) compared to the Pre/Post operations (since they have to deal with two sets of state
variables - current and next). Second, in all previous algorithms and in INTERLEAVE, the
number of basic set operations is asymptotically at most the number of Pre/Post operations.
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Symbolic space is defined as the maximum number of sets (regardless of the size of the
sets) stored by a symbolic algorithm at any point of time. This is because large sets may
have a compact BDD representation (e.g., the set {0, . . . , 2n − 1} has a BDD with a single
node). Moreover, since the symbolic model is motivated by memory restrictions and compact
storage, symbolic algorithms typically aim for sub-linear symbolic space (otherwise, why
would you even use a symbolic algorithm?).

4.2 Omitted Functions
We omit the pseudocode for the following functions, since it follows in a straightforward
manner from the definitions and the operations on BDDs presented in chapter 2.

• ROut(V ′, V, E) takes a vertex set V ′ ⊆ V and a graph (V, E) = GEBA(T, π) for some
sub-MDP (T, π), and returns ROut(T,π)(V ′) (see definition 2.12).

• Attr(X, V, E) takes a state-action-pair set X ⊆ sa(T, π) and a graph GEBA(T, π) =
(V, E) for some sub-MDP (T, π), and returns Attr(T,π)(X) (see definition 2.13).

• Pre(V ′, E) (resp. Post(V ′, E)) takes a vertex set V ′ ⊆ V and a labelled (for MEC
algorithms)/unlabelled (for SCC algorithms) edge relation E for a graph G = (V, E),
and returns Pre(V,E)(V ′) (resp. Post(V,E)(V ′)) (see definition 2.17). In practice, one
could abstract labels away and pass an unlabelled edge relation for MECs too.

4.3 NAIVE Symbolic MEC Decomposition
In this section, we will present a naive symbolic version of the explicit MEC decomposition
algorithm given by deAlfaro in his PhD Thesis in 1998 [Alf98]. It follows closely from the
definition of MECs (definition 2.9). Though it is simple, Faber’s thesis [Fab23b] found
that it had the fastest runtime on the Quantitative Verification Benchmark Set, and our
experimental evaluation (chapter 5) found it to be the second-fastest after INTERLEAVE.

The input to the algorithm is the graph GEBA(M) = (V, E) for an MDP M, and its output
is the set MECs(M). The algorithm maintains a worklist χ of vertex sets, which are
"candidates" for being MECs (note that the edges for an MEC can be constructed from its
vertex set later, assuming unwanted state-action pairs have been deleted). It also maintains a
set result that stores all the MECs found so far. result is initially empty, and χ is initialised
with all the SCCs of (V, E).

In each iteration, the algorithm picks a candidate V ′ from χ. It is either:
1. identified as a maximal end component and added to result, or

2. removed because the induced sub-MDP doesn’t contain an edge, or

3. it contains vertices with outgoing actions. In this case, the ROut of the vertex set
gives these state-action pairs, and its Attr gives the states and state-action pairs which
we know can’t be part of any MEC. We remove the state-action pairs from E and

© 2024, Indian Institute of Technology Delhi
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remove the states from V ′. After this step, the induced subgraph may not be strongly
connected anymore. Thus, the SCCs of this subgraph are determined and added to χ
as new candidates for maximal end components.

Algorithm 1 shows the pseudocode for the NAIVE algorithm. It assumes a symbolic SCC
decomposition algorithm called AllSCCs that takes an (unlabelled) directed graph and
returns the list of SCCs of the graph.

Algorithm 1 MEC-Decomp-Naive(G = (V, E))
Input: Graph G = (V, E) = GEBA(M) for some MDP M = (S, A, dinit, δ).
Output: The set of edge-based graph representations of MECs(M), i.e.,
{GEBA(T, π) | (T, π) ∈ MECs(M)}.

1: result← ∅

2: χ← AllSCCs(V, ∃α ∈ A . E) ▷ Abstract actions for the AllSCCs call.

3: while χ ̸= ∅ do

4: Remove some V ′ ∈ χ from χ

5: rout ← ROut(V ′, V, E)

6: (U1, X1)← Attr(rout, V, E)

7: if rout = ∅ then

8: if Post(V ′, E) ∩ V ′ ̸= ∅ then ▷ G[V ′] has at least one edge.

9: result← result ∪ {(V ′, E ∩ (V ′ × A× V ′))}

10: else

11: E ← E \ (X1 × V ) ▷ Remove the state-action pairs in X1 from E.

12: V ′ ← V ′ \ U1 ▷ Remove the states in U1 from V ′.

13: χ← χ ∪ AllSCCs(V ′, (∃α ∈ A . E) ∩ (V ′ × V ′)) ▷ Abstract actions and restrict
edges for the AllSCCs call.

14: return result

Figure 4.1 shows the execution of the NAIVE algorithm on an example MDP. It has been
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borrowed from Faber’s thesis [Fab23b].

Figure 4.1: Example Execution of NAIVE (Source : Faber’s Thesis [Fab23b])

The figures show the following things:
(a) The graph is decomposed into SCCs. The SCC {P5} with the action α5 is identified as

an MEC (yellow) since ROut(P5) = ∅. The other SCC C is not an MEC (gray) due to
the outgoing action β4.

(b) After the removal of β4, another SCC decomposition on C is performed. The SCC
{P3, P4, P6} has no outgoing actions and is thus identified as an MEC with its actions
{α3, α4, α6}. The other SCC {P1, P2} is not an MEC due to the outgoing action β2.

(c) After the removal of β2, the final SCC decomposition on {P1, P2} is performed. The
resulting SCC has no outgoing edges and is identified as an MEC with its actions
{α1, α2}.

We will not prove the correctness of the algorithm here, though the correctness proof for
INTERLEAVE has some of the required pieces. The analysis from [CHL+18] shows that this
algorithm requires O(n2) symbolic operations, and O(log n) symbolic space, assuming an O(n)
symbolic operations (and O(log n) symbolic space) symbolic SCC decomposition algorithm.
The specific algorithm they mention is the SKELETON algorithm from [GPP03]. We will take
a look at that algorithm next, and then present the INTERLEAVE algorithm.

4.4 SKELETON Symbolic SCC Decomposition
The SKELETON algorithm came out in 2003, and was the only O(n) symbolic operations SCC
decomposition algorithm until 2023, when the CHAIN algorithm [LSS+23] was published. It is
also optimal, as proved in [CDHL17]. The CHAIN algorithm essentially does the same thing
as SKELETON, but uses less space. In this thesis, we will focus on SKELETON since it is easier
to analyse.

A primitive version of the SKELETON algorithm would look like the following. The input is a
graph (V, E) with V ̸= ∅.
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1. Pick a vertex v ∈ V arbitrarily.

2. Compute the set of vertices reachable from v (Fv = Fwd(v, E)) by repeated Post
operations on {v}.

3. Compute the SCC of v (SCCv) by repeated Pre operations on {v} and intersecting
with Fv.

4. Output SCCv.

5. Recurse on the subgraphs induced by the two remaining partitions of V (if they are
non-empty) : (Fv \ SCCv) and V \ Fv.

What drives the efficiency of this algorithm is that a vertex v ∈ V is not picked arbitrarily, a
spine set < S, v > is given as input and v is chosen. Initially, < S, v > is empty and so v is
chosen arbitrarily, but everytime Fwd(v, E) is computed, a new spine set is computed for
recursing on the (Fv \ SCCv) partition. So, the actual SKELETON algorithm looks like this:
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Algorithm 2 SCC-Decomp-Skeleton(V, E, S, {v})
Input: A directed graph G = (V, E) and a spine set < S, v > in G.
Output: The set of SCCs of G.

1: if V = ∅ then return

2: if S = ∅ then {v} ← Pick(V )

3: ▷ Compute the forward set of v and a new spine set < S ′, v′ >.

4: Fv, S ′, {v′} ← Skeleton-Fwd(V, E, {v})

5: SCCv ← {v} ▷ Compute and output the SCC of v.

6: while ((Pre(SCCv) ∩ Fv) \ SCCv) ̸= ∅ do

7: SCCv ← SCCv ∪ (Pre(SCCv) ∩ Fv)

8: Output SCCv as an SCC.

9: ▷ Recurse on the partition Fv \ SCCv. Use the new spine set.

10: V ′ ← Fv \ SCCv , E ′ ← E ∩ (V ′ × V ′)

11: S ′ ← S ′ \ SCCv , {v′} ← {v′} \ SCCv

12: SCC-Decomp-Skeleton(V ′, E ′, S ′, {v′}).

13: ▷ Recurse on the partition V \ Fv. Use the old spine set.

14: V ′ ← V \ Fv , E ′ ← E ∩ (V ′ × V ′)

15: S ′ ← S \ SCCv , {v′} ← (Pre(S ∩ SCCv)) ∩ (S \ SCCv)

16: SCC-Decomp-Skeleton(V ′, E ′, S ′, {v′}).

The exact definition and calculation of a spine set are not important to our algorithm, so we
will not go into them. But there are a couple of important properties:

1. A spine set < S, v > implicitly represents a sequence v0, v1, . . . , vn of vertices, with v =
vn. By implicitly, we mean that having access only to the set (not the sequence) S and
the last vertex v = vn, we can get the second last vertex vn−1 and S ′ = {v0, . . . , vn−1}
using only basic set operations, and < S ′, vn−1 > is also a spine set.
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2. Given a spine set < S, v >, the intersection of SCC(v) and S is a contiguous chunk of
the sequence, i.e., {vj, . . . , vn} for some j ∈ {0, . . . , n}.

The point of computing a spine set while calculating the forward set and then passing it to
the first call is, that on the chain of second calls after that, the SCCs of vertices of the chain
set are taken out in reverse order.

The reason for this is to ensure efficiency of the algorithm, which we will not go into. But
how this is done is important for us. The two properties ensure that we know what to pass
as the spine set for the second recursive call (we remove the contiguous chunk that forms
SCC(v), then take the last vertex before that in the spine set).

We initially sought to translate a similar algorithm for MEC decomposition, but as we will
now see, a few complications arise.

4.5 INTERLEAVE Symbolic MEC Decomposition

4.5.1 Informal Development

We saw a primitive version of the SKELETON SCC decomposition algorithm. The key idea
behind the INTERLEAVE algorithm is that NAIVE performs an SCC decomposition, then
performs some MEC computation, performs more SCC decompositions and so on. Is it
possible to interleave the MEC computation while performing the SCC decomposition instead
of waiting for an entire SCC decomposition to finish and then performing it? Along those
lines, a similar primitive version of the INTERLEAVE MEC decomposition algorithm would
look like the following (the differences have been coloured blue). The input is a graph
G = (V, E) = GEBA(T, π) for some sub-MDP (T, π) of some MDP M = (S, A, dinit, δ).

1. Pick a vertex v ∈ V arbitrarily.

2. Compute the set of vertices reachable from v (Fv = Fwd(v, E)) by repeated Post
operations on {v}.

3. Compute the SCC of v (SCCv) by repeated Pre operations on {v} and intersecting
with Fv.

4. If rout = ROut(SCCv, V, E) = ∅ then output the sub-MDP induced by SCCv.

5. Otherwise, compute Attr(rout, V, E), set V1 = (SCCv \ states) and remove the state-
action pairs from E.

6. Compute Attr(ROut(V \ Fv, V, E), V, E), set V3 = ((V \ Fv) \ states) and remove the
state-action pairs from E.

7. Recurse on the sub-MDPs induced by the following three vertex-sets (if they are
non-empty) : V1, (Fv \ SCCv) and V3.

Note that the ROut for the second vertex set (Fv \ SCCv) is actually always ∅ (this is proven
in our correctness proof), so we can omit that. Now, this algorithm is correct, as the primitive
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SKELETON algorithm was. But we would like to get efficiency. So, we can try to use the spine
set idea in this algorithm. However, there are two problems.

1. In this algorithm, we cannot output the SCC of v directly, since it may contain some
state-action pairs that can go outside the SCC. In that case, they will be identified
using ROut (and more states and state-action pairs will be added using Attr), and
then we need to recurse on the remaining subgraph again. We do not know what to
pass as the spine set for this recursive call.

2. For the third recursive call (the V \Fv partition), in the SKELETON algorithm, we could
chop off a contiguous chunk of the spine set from the end and pass the remaining spine.
However, here, since we are removing ROut (and its Attr), we may remove random
nodes and edges on the spine, and it will no longer implicitly represent a sequence. In
other words, the spine may not remain a spine, and thus cannot be passed as a spine
set.

It is only the second recursive call (on Fv \ SCCv) from which we don’t have to remove any
vertices or edges. So we can pass it the same next vertex to start from, however the rest of
the spine isn’t useful since it would have been used in the chain of (V Fv) recursive calls after
that (which we do not know how to make). That is essentially what INTERLEAVE does. For
the second recursive call, it picks any vertex at maximum distance from v, and passes that
as the vertex to start from (for SKELETON, v′ in the returned spine set < S ′, v′ > is always a
vertex at maximum distance from v).

The benefit we get from doing that is, suppose v′ is a vertex at maximum distance from v,
and suppose v0 = v, . . . , vn = v′ is a shortest path from v to v′. Note that computing v’s
SCC requires 2n symbolic operations, so we can charge O(1) operations to each vi. Then,
in the recursive call on Fv \ SCCv, we will compute Fv′ , and we are guaranteed that only
those vis will be in Fv′ which are also in SCCv′ . So we will not charge the same vertices
again, except when they are in the SCC we compute. This is not strong enough to change
the complexity of the algorithm (as it only gives a guarantee on the immediate next call), as
we will see. But it does seem to lead to empirical improvements in running time.

4.5.2 Pseudocode

Algorithm 3 shows the pseudocode for the INTERLEAVE algorithm. It is the same as the
primitive version mentioned earlier, with the difference that the recursive call on Fv \ SCCv

now gets a specified vertex to start from, some v′ that is at maximum distance from v.
SCC-Fwd-NewStart({v}, E) computes the SCC of v, the forward set of v, and such a v′.
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Algorithm 3 MEC-Decomp-Interleave(V, E, {v} = ∅)
Input: (V, E) = GEBA(T, π) for some sub-MDP (T, π) of some MDP M = (S, A, dinit, δ)
and (optionally), a start vertex v ∈ V . For the initial call, {v} = ∅.
Output: The set of graph representations of MECsM(T ), i.e., {GEBA(T ′, π′) | (T ′, π′) ∈
MECsM(T )}.

1: if {v} = ∅ then {v} ← Pick(V )

2: Cv, Fv, {v′} ← SCC-Fwd-NewStart({v}, E)

3: (U1, X1)← Attr(ROut(Cv, V, E), V, E)

4: if X1 = ∅ then

5: ▷ Every vertex has an outgoing edge from definitions of sub-MDP and GEBA. So
E ∩ (Cs × A× Cs) ̸= ∅. Output (Cv, E ∩ (Cv × A× Cv)) as an MEC

6: else

7: E1 ← E \ (X1 × V ) ▷ Remove the state-action pairs in X1 from E.

8: V1 ← Cv \ U1 ▷ Remove the states in U1 from Cv.

9: if V1 ̸= ∅ then MEC-Decomp-Interleave(V1, E1 ∩ (V1 × A× V1), ∅)

10: V2 ← (Fv \ Cv)

11: if V2 ̸= ∅ then MEC-Decomp-Interleave(V2, E ∩ (V2 × A× V2), {v′})

12: (U3, X3)← Attr(ROut(V \ Fv, V, E), V, E)

13: E3 ← E \ (X3 × V ) ▷ Remove the state-action pairs in X3 from E.

14: V3 ← (V \ Fv) \ U3 ▷ Remove the states in U3 from V \ Fv.

15: if V3 ̸= ∅ then MEC-Decomp-Interleave(V3, E3 ∩ (V3 × A× V3), ∅)
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Algorithm 4 SCC-Fwd-NewStart({s}, E)
Input: A singleton vertex set {s} (s ∈ V ) and a labelled edge relation E for a graph
G = (V, E).
Output: The SCC of s in G, the set of vertices reachable from s, and a vertex at maximum
distance from s.

1: Fs, {s′} ← Fwd-NewVertex({s}, E)

2: Cs ← {s}.

3: while (Pre(Cs, E) ∩ Fs) ̸⊆ Cs do

4: Cs ← Cs ∪ (Pre(Cs, E) ∩ Fs)

5: return Cs, Fs, {s′}

Algorithm 5 Fwd-NewVertex({v}, E)
Input: A vertex set v ∈ V and a labelled edge relation E for a graph G = (V, E).
Output: The set of vertices in V reachable from v and a vertex at maximum distance from
v (in the graph G).

1: F ← ∅

2: L← {v}

3: while L ̸= ∅ do

4: F ← F ∪ L

5: L← Post(L, E) \ F

6: return F

Figure 4.2 shows an example execution of the INTERLEAVE algorithm.
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(a) Call 1 : v = P5, SCCv in yellow and V \Fv

in blue (b) Call 2 : Initial graph

(c) Call 2 : v = P3, SCCv in yellow and V \Fv

in blue (d) Call 3 : Initial graph

(e) Call 3 : v = P1, SCCv in yellow

Figure 4.2: Execution of INTERLEAVE on an Example MDP

The figures show the following things:
(a) v = P5 is picked as the vertex to start from. SCCv = {P5} is computed (yellow),

Fv \SCCv = ∅ and V \SCCv = {P1, P2, P3, P4, P6} (blue). Since ROut(SCCv, V, E) = ∅,
it is output as an MEC (with edges {(P5, α5, P5)}).

(b) ROut(V \SCCv, V, E) = {(P4, β4)} (and its Attr is the same) is removed from the graph
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before the recursive call is made on V \ SCCv. The subgraph passed to the recursive
call is highlighted in blue.

(c) v = P3 is picked as the vertex to start from. SCCv = {P3, P4, P6} is computed (yellow),
Fv \ SCCv = ∅ and V \ SCCv = {P1, P2} (blue). Since ROut(SCCv, V, E) = ∅, it is
output as an MEC (with edges {(P3, α3, P4), (P4, α4, P6), (P6, α6, P3)}).

(d) ROut(V \SCCv, V, E) = {(P2, β2)} (and its Attr is the same) is removed from the graph
before the recursive call is made on V \ SCCv. The subgraph passed to the recursive
call is highlighted in blue.

(e) v = P1 is picked as the vertex to start from. SCCv = {P1, P2} is computed (yellow),
Fv \SCCv = ∅ and V \SCCv = ∅. Since ROut(SCCv, V, E) = ∅, it is output as an MEC
(with edges {(P1, α1, P2), (P2, α2, P1)}).

If we ignore figures 4.2b and 4.2d which are just showing the initial arguments, the steps taken
by INTERLEAVE seem to be similar to the steps taken by NAIVE (see figure 4.1). However,
the first step of NAIVE is actually two steps (assuming its SCC decomposition call starts
from the same v = P5), because it needs to figure out the SCC decomposition. One key
difference is that when the SCC decomposition algorithm for NAIVE (let’s assume
it is SKELETON) looks at the blue subgraph, it doesn’t know that β4 is removed.
We don’t need to perform the SCC decomposition of the blue subgraph with β4 included, so
NAIVE performs one additional step that is redundant.

4.5.3 Complexity Analysis

Number of Symbolic Operations: As mentioned before, we will be focusing on the
number of Pre/Post operations. Suppose the input graph MDP is M = (S, A, dinit, δ),
(V, E) = GEBA(M), and MEC-Decomp-Interleave(V, E, ∅) is called. Let |S| = p and
|{(s, α) ∈ S × A | α ∈ A[s]}| = q. Then, there are two kinds of Pre/Post operations:

1. Those in the ROut and Attr computations on lines 3 and 12. Each such operation
discovers at least one new state or state-action pair that is thereafter removed from
the graph and never seen again. Thus, over the entire algorithm, the cost of these is
O(p + q) symbolic operations.

2. Those in the SCC-Fwd-NewStart computation. When given an input graph with n
vertices, these can be at most 2n operations. Now, if you look at the tree of recursive
calls, the cost incurred at the top level is c1 = 2p. At the second level, the cost incurred
is c2 = 2(|V1| + |V2| + |V3|). Since V1 ⊆ SCCv, V2 = Fv \ SCCv and V3 ⊆ V \ Fv, we
have c2 ≤ 2(|SCCv|+ |Fv \ SCCv|+ |V \ Fv|) = 2|V | = 2p. So the cost for each level is
at most 2p. Now, how many levels can there be? In every recursive call, the number of
states and/or the number of state-action pairs decreases by at least one. Therefore,
there can be at most (p + q) levels. This means that the number of symbolic operations
done by SCC-Fwd-NewStart over the entire algorithm is O(p(p + q)).

The total cost for the algorithm then becomes O(p(p + q)) symbolic operations. As we
had mentioned earlier, to maintain consistency with previous work, we will mention the
complexity assuming n is the number of vertices and m is the number of edges in the GVBA

© 2024, Indian Institute of Technology Delhi



4.5 INTERLEAVE Symbolic MEC Decomposition 32

representation for M. Note that this means n = p + q. Thus, the symbolic operations
complexity of this algorithm is O(n2).

Symbolic Space Complexity: This is the maximal number of sets that the algorithm
stores simultaneously at any point of time. Note that each recursive call, excluding the space
used by its children, only stores O(1) number of sets simultaneously. Thus, symbolic space is
just the maximum depth of recursive calls reached throughout the algorithm.

To achieve efficiency here, we will use the fact that our algorithm is tail-recursive. After
the first two recursive calls have returned, the memory stored by the current call can be
deleted before making the third recursive call. So we just need to look at the maximum
depth reached through the first two recursive calls. Now, the three recursive calls should be
made in increasing order of the sizes of the vertex sets |V1|, |V2|, |V3|. The sizes of vertex sets
for both of the first two recursive calls must be < 2p/3. On both branches, the vertex set
sizes decreases by at least 2/3. Therefore, the maximum depth that can be reached is log 3

2
p.

Again, since p = O(n) where n is the number of vertices in the GVBA representation, the
symbolic space complexity of this algorithm is O(log n).

4.5.4 Correctness Proof

To prove the algorithm correct, we will show (1) Soundness (whenever it outputs an MEC,
it is actually an MEC) and (2) Completeness (it outputs all the MECs of the MDP it is
called on). Before we show these, we will need to prove that every time we remove a state or
state-action pair, we remove one that’s not in any MEC. That is what the following series of
lemmas is for.

Lemma 4.1. Let (T, π) be an MEC-closed sub-MDP of some MDP M = (S, A, dinit, δ) and
X ⊆ sa(T, π) be a state-action pair set such that for all (T ′, π′) ∈ MECs(M), sa(T ′, π′)∩X =
∅. Suppose Attr(T,π)(X) = (S ′, X ′). Then, for all (T ′, π′) ∈ MECs(M), T ′ ∩ S ′ = ∅ and
sa(T ′, π′) ∩X ′ = ∅.

Proof. Let (T ′, π′) ∈ MECs(M). From definition 2.13, we have (S ′, X ′) = Attr(T,π)(X) =
(⋃

i∈N Si,
⋃

i∈N Xi). We will show by induction on i that for all i ∈ N, T ′ ∩ Si = ∅ and
sa(T ′, π′) ∩Xi = ∅.

Base Case (i = 0): By definition 2.13, S0 = ∅ and X0 = X. The first implies T ′ ∩ S0 = ∅.
The second, along with our assumption, implies sa(T ′, π′) ∩X0 = ∅.

Induction Step: We assume that T ′ ∩ Si = ∅ and sa(T ′, π′) ∩Xi = ∅.
• Assume, for the sake of contradiction, that T ′ ∩ Si+1 ≠ ∅. Pick s ∈ T ′ ∩ Si+1. Since

T ′ ∩ Si = ∅ from the induction hypothesis, we must have s ∈ T ′ ∩ (Si+1 \ Si). Note
that we have (T ′, π′) = MECM(s). We have:
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s ∈ T ∵ s ∈ (Si+1 \ Si) and definition 2.13 (4.1)
∀α ∈ π(s) . (s, α) ∈ Xi ∵ s ∈ (Si+1 \ Si) and definition 2.13 (4.2)
(T ′, π′) ⊆ (T, π) ∵ equation 4.1, (T ′, π′) = MECM(s) and (T, π) is MEC-closed

(4.3)

Pick α ∈ π′(s) (exists from definition 2.3 since (T ′, π′) is a sub-MDP). Then, α ∈ π(s)
from equation 4.3. This implies (s, α) ∈ Xi (∵ equation 4.2). Note that since s ∈ T ′

and α ∈ π′(s), we also have (s, α) ∈ sa(T ′, π′). But from the induction hypothesis,
we have that sa(T ′, π′) ∩Xi = ∅, which is a contradiction. Therefore, we must have
T ′ ∩ Si+1 = ∅.

• Assume, for the sake of contradiction, that sa(T ′, π′) ∩ Xi+1 ̸= ∅. Pick (s, α) ∈
sa(T ′, π′) ∩ Xi+1. Since sa(T ′, π′) ∩ Xi = ∅ from the induction hypothesis, we must
have (s, α) ∈ sa(T ′, π′)∩ (Xi+1 \Xi). Since (s, α) ∈ (Xi+1 \Xi), definition 2.13 tells us
that ∃ s′ ∈ Si . (δ(s, α, s′) > 0). Since (T ′, π′) is a sub-MDP, s ∈ T ′ and α ∈ π′(s), this
implies s′ ∈ T ′. But from the induction hypothesis, T ′∩Si = ∅, which is a contradiction.
Therefore, we must have sa(T ′, π′) ∩Xi+1 = ∅.

This completes the induction step, and the proof.

Lemma 4.2. Let (T, π) be an MEC-closed sub-MDP of some MDP M = (S, A, dinit, δ) and
(V, E) = GEBA(T, π). Consider the execution of MEC-Decomp-Interleave(V, E, {v}) where
{v} = ∅ or v ∈ V . Then, for any (T ′, π′) ∈ MECs(M), T ′ ∩ U1 = ∅ and sa(T ′, π′) ∩X1 = ∅.

Proof. We know, from the algorithm, that (U1, X1) = Attr(T,π)(ROut(T,π)(Cs)), where Cs

is the SCC in (V, E) of some s ∈ T (which is v if the third argument is not ∅). First, we
will show that for any (T ′, π′) ∈ MECs(M), sa(T ′, π′) ∩ ROut(T,π)(Cs) = ∅. Then, applying
lemma 4.1 proves the final result (note that definition 2.12 guarantees the other precondition
of lemma 4.1, i.e., ROut(T,π)(Cs) ⊆ sa(T, π)). So, assume, for the sake of contradiction, that
there is some (T ′, π′) ∈ MECs(M) such that sa(T ′, π′) ∩ ROut(T,π)(Cs) ̸= ∅.

Pick (s′, α) ∈ sa(T ′, π′) ∩ ROut(T,π)(Cs). Since (s′, α) ∈ ROut(T,π)(Cs), from definition 2.12,
we have t ∈ (T \Cs) such that δ(s′, α, t) > 0. As (T ′, π′) is a sub-MDP, s′ ∈ T ′ and α ∈ π′(s′),
this implies t ∈ T ′. Now, (T ′, π′) is an end-component and s′, t ∈ T ′. So, we have that
s′ and t can reach each other in (T ′, π′). Since s′ ∈ T and (T, π) is MEC-closed, we have
(T ′, π′) = MECM(s′) ⊆ (T, π). Thus s′ and t can also reach each other in (T, π). This implies
that t ∈ SCC(V,E)(s′) = Cs, which is a contradiction to the fact that t ∈ T \ Cs. Therefore,
we must have that for all (T ′, π′) ∈ MECs(M), sa(T ′, π′) ∩ ROut(T,π)(Cs) = ∅. As argued
before, applying lemma 4.1 now proves the final result.

Lemma 4.3 is the reason why we don’t need to compute ROut before the second recursive
call.
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Lemma 4.3. Let (T, π) be an MEC-closed sub-MDP of some MDP M = (S, A, dinit, δ) and
(V, E) = GEBA(T, π). Consider the execution of MEC-Decomp-Interleave(V, E{v}) where
{v} = ∅ or v ∈ V . If {v} = ∅, let s ∈ V be the vertex picked on line 1. Otherwise, let s = v.
Then, ROut(T,π)(Fs \ Cs) = ∅.

Proof. Assume, for the sake of contradiction, that there is some (s1, α) ∈ ROut(T,π)(Fs \ Cs).
From the definition of ROut, there is some s2 ∈ (T \ (Fs \ Cs)) = ((T \ Fs) ⊎ Cs) such
that δ(s1, α, s2) > 0. First note that s2 ∈ Fs since s1 ∈ Fs and there is an edge (labelled
α) from s1 to s2. So we must have s2 ∈ Cs. But then, there is a path from s2 to s, and
thus from s1 to s. Combined with s1 ∈ Fs, this means s1 ∈ Cs, contradicting the fact that
(s1, α) ∈ ROut(T,π)(Fs \ Cs). Therefore, we must have ROut(T,π)(Fs \ Cs) = ∅.

Lemma 4.4. Let (T, π) be an MEC-closed sub-MDP of some MDP M = (S, A, dinit, δ) and
(V, E) = GEBA(T, π). Consider the execution of MEC-Decomp-Interleave(V, E{v}) where
{v} = ∅ or v ∈ V . Then, for any (T ′, π′) ∈ MECs(M), T ′ ∩ U3 = ∅ and sa(T ′, π′) ∩X3 = ∅.

Proof. We know, from the algorithm, that (U3, X3) = Attr(T,π)(ROut(T,π)(T \ Fs)), where Fs

is the forward reachable set in (V, E) of some s ∈ T (which is v if the third argument is not
∅). First, we will show that for any (T ′, π′) ∈ MECs(M), sa(T ′, π′) ∩ ROut(T,π)(T \ Fs) = ∅.
Then, applying lemma 4.1 proves the final result (note that definition 2.12 guarantees the
other precondition of lemma 4.1, i.e., ROut(T,π)(T \ Fs) ⊆ sa(T, π)).

So, assume, for the sake of contradiction, that there is some (T ′, π′) ∈ MECs(M) such that
sa(T ′, π′)∩ROut(T,π)(T \Fs) ̸= ∅. Pick (s1, α) in the intersection. From the definition of ROut,
we have s2 ∈ (T \ (T \Fs)) = Fs such that δ(s1, α, s2) > 0. As (T ′, π′) is a sub-MDP, s1 ∈ T ′

and α ∈ π′(s1), this implies s2 ∈ T ′. Now, (T ′, π′) is an end-component and s1, s2 ∈ T ′.
So, we have that s2 can reach s1 in (T ′, π′). Since s1 ∈ T and (T, π) is MEC-closed, we
have (T ′, π′) = MECM(s1) ⊆ (T, π). Thus s2 can also reach s1 in (T, π). Since s2 ∈ Fs, this
implies that s1 ∈ Fs, which is a contradiction to the fact that (s1, α) ∈ ROut(T,π)(T \ Fs).
Therefore, we must have that for all (T ′, π′) ∈ MECs(M), sa(T ′, π′)∩ROut(T,π)(T \ Fs) = ∅.
As argued before, applying lemma 4.1 now proves the final result.

Now that we have shown we never remove a "wrong" state or state-action pair, we are ready
to prove soundness – if we say something is an MEC, then it is an MEC.

Theorem 4.5 (Soundness). Let (T, π) be an MEC-closed sub-MDP of some MDP M =
(S, A, dinit, δ) and (V, E) = GEBA(T, π). Consider the execution of MEC-Decomp-Interleave(V, E{v})
where {v} = ∅ or v ∈ V . If {v} = ∅, let s ∈ V be the vertex picked on line 1. Otherwise, let
s = v. If X1 = ∅, then (Cs, E ∩ (Cs × A× Cs)) = GEBA(MECM(s)).

Proof. From the algorithm, we know (U1, X1) = Attr(T,π)(ROut(T,π)(Cs)). From the definition
of Attr, if X1 = ∅, then we must have ROut(T,π)(Cs) = ∅. Define π′ = π |Cs , i.e., the function
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π restricted to the domain Cs.

Claim 1: (Cs, π′) is a sub-MDP of M. Proof: This is true because Cs ̸= ∅ (as s ∈ Cs)
and for each s′ ∈ Cs ⊆ T , π′(s′) = π(s′). Since (T, π) is a sub-MDP, this implies that ∅ ̸=
π′(s′) ⊆ A[s′]. Lastly, assume there are s1 ∈ Cs, α ∈ π′(s1), s2 ∈ S such that δ(s1, α, s2) > 0.
Then, since s1 ∈ T, π′(s1) = π(s1) and (T, π) is a sub-MDP, s2 ∈ T . Now, if s2 ̸∈ Cs, then
we must have (s1, α) ∈ ROut(T,π)(Cs), but since we don’t, s2 ∈ Cs.

Claim 2: (Cs, π′) is an end-component. Proof: Since Cs is an SCC, every s1 ∈ Cs can
reach every s2 ∈ Cs using only vertices in Cs and actions from their π sets. Since the π′ sets
for each vertex in Cs are equal to their π sets, all pairs of vertices in Cs can reach other in
(Cs, π′). The claim now follows from Claim 1.

Claim 3: (Cs, π′) = MECM(s). Proof: Since s ∈ T and (T, π) is MEC-closed, we know
MECM(s) ⊆ (T, π). Suppose it is (T0, π0). We first show that (T0, π0) ⊆ (Cs, π′). Take
any s0 ∈ T0, there is a path from s0 to s (and vice versa) using states from T0 and actions
from their π0 sets. Since T0 ⊆ T and π0(s′) ⊆ π(s′)∀ s′ ∈ T0, s0 and s can reach each
other in (T, π). This implies that s0 ∈ Cs. So T0 ⊆ Cs. Next, for any s′ ∈ T0, we have
π0(s′) ⊆ π(s′) = π′(s′) since s′ ∈ Cs. Thus, (T0, π0) ⊆ (Cs, π′). But both are end components
and (T0, π0) is maximal, therefore (Cs, π′) must be MECM(s).

Claim 4: (Cs, E ∩ (Cs×A×Cs)) = GEBA(Cs, π′). Proof: We will show that E ∩ (Cs×A×
Cs) = {(s1, α, s2) ∈ Cs×A×Cs | α ∈ π′(s1) ∧ (δ(s1, α, s2) > 0)}. If s1 ∈ Cs, α ∈ π′(s1), s2 ∈
Cs such that δ(s1, α, s2) > 0, then since Cs ⊆ T , π′(s1) = π(s1), and (V, E) = GEBA(T, π),
we must have (s1, α, s2) ∈ E, and thus, (s1, α, s2) ∈ E ∩ (Cs × A × Cs). On the other
hand, if (s1, α, s2) ∈ E ∩ (Cs × A × Cs), then since (V, E) = GEBA(T, π), we must have
α ∈ π(s1) = π′(s1) and δ(s1, α, s2) > 0.

We will next prove completeness by induction on the size of the sub-MDP. However, before
we do that, we need to prove that all our recursive calls satisfy the preconditions that we
require from our inputs.

Lemma 4.6. Let (T, π) be an MEC-closed sub-MDP of some MDP M = (S, A, dinit, δ) and
(V, E) = GEBA(T, π). Consider the execution of MEC-Decomp-Interleave(V, E{v}) where
{v} = ∅ or v ∈ V . If {v} = ∅, let s ∈ V be the vertex picked on line 1. Otherwise, let s = v.
If X1 ≠ ∅ and V1 ̸= ∅, then (V1, E1 ∩ (V1 × A× V1)) = GEBA(T1, π1) for some MEC-closed
sub-MDP (T1, π1).

Proof. Define, for all s′ ∈ V1, π1(s′) = {α ∈ A | ∃t ∈ V1 . (s′, α, t) ∈ E1}. It is clear from
this definition that (V1, E1 ∩ (V1 × A× V1)) = GEBA(V1, π1).

Claim 1: (V1, π1) is a sub-MDP. Proof: V1 ̸= ∅ from assumption.
• For any state s′ ∈ V1, there must be some α ∈ π(s′) such that (s′, α) ̸∈ X1. This is

because, if not, then, from the definition of Attr, we will have s′ ∈ U1, contradicting

© 2024, Indian Institute of Technology Delhi



4.5 INTERLEAVE Symbolic MEC Decomposition 36

the fact that s′ ∈ V1 = Cs \ U1. Now, since α ∈ π(s′), there is some t ∈ T such
that (s′, α, t) ∈ E. We have (s′, α, t) ∈ E1 since (s′, α) ̸∈ X1. If t ∈ U1, then
(s′, α) ∈ X1 (definition of Attr). If t ∈ T \ Cs, then (s′, α) ∈ ROut(T,π)(Cs), and
thus (s′, α) ∈ X1. These contradict the fact that (s′, α) ̸∈ X1. Thus, we must have
t ∈ V1. So (s′, α, t) ∈ E1 ∩ (V1 × A × V1), and thus α ∈ π1(s′) ̸= ∅. We also have
π1(s′) ⊆ π(s′) ⊆ A[s′].

• Suppose s′ ∈ V1, α ∈ π1(s′), t ∈ S such that δ(s′, α, t) > 0. Since π1(s′) ⊆ π(s′), t ∈ T .
If t ∈ T \ Cs or t ∈ U1, then (s′, α) ∈ X1, which contradicts the fact that α ∈ π1(s′).
Thus t ∈ V1.

Claim 2: (V1, π1) is MEC-closed. Proof: Take any s1 ∈ V1. We will show that MECM(s1) ⊆
(V1, π1). Suppose MECM(s1) = (Ts1 , πs1). Since (T, π) is MEC-closed and s1 ∈ V1 ⊆ T ,
(Ts1 , πs1) ⊆ (T, π).

• Now, for any s2 ∈ Ts1 , from the definition of an MEC, s1 and s2 can reach each other
using only state-action pairs from sa(Ts1 , πs1). Since sa(Ts1 , πs1) ⊆ sa(T, π), it follows
that s1, s2 are in the same SCC (i.e., Cs). Now, if s2 ̸∈ V1, then s2 ∈ U1, but then,
from lemma 4.2, it cannot be in any MEC. Thus s2 ∈ V1. This shows that Ts1 ⊆ V1.

• Take any s2 ∈ Ts1 and α ∈ πs1(s2). Since (Ts1 , πs1) is a sub-MDP, there exists
t ∈ Ts1 ⊆ V1 such that δ(s2, α, t) > 0. Further, (s2, α, t) ∈ E1 because if not, then
(s2, α) ∈ X1 which is not possible due to lemma 4.2. The previous two assertions imply
that α ∈ π1(s2). Thus, πs1(s2) ⊆ π1(s2) for all s2 ∈ Ts1 .

Lemma 4.7. Let (T, π) be an MEC-closed sub-MDP of some MDP M = (S, A, dinit, δ) and
(V, E) = GEBA(T, π). Consider the execution of MEC-Decomp-Interleave(V, E{v}) where
{v} = ∅ or v ∈ V . If {v} = ∅, let s ∈ V be the vertex picked on line 1. Otherwise, let s = v.
If V2 ̸= ∅, then (V2, E2 ∩ (V2 × A × V2)) = GEBA(T2, π2) for some MEC-closed sub-MDP
(T2, π2).

Proof. We know V2 = Fs \ Cs. Define, for all s′ ∈ V2, π2(s′) = {α ∈ A | ∃t ∈ V2 . ((s′, α, t) ∈
E)}. It is clear from this definition that (V2, π2) = GEBA(V2, E ∩ (V2 × A× V2)).

Claim 1: (V2, π2) is a sub-MDP. Proof: V2 ̸= ∅ by assumption.
• For any s′ ∈ V2, take any α ∈ π(s′) (exists because (T, π) is a sub-MDP). From the

definition of a sub-MDP, there is t ∈ T such that δ(s′, α, t) > 0. If t ̸∈ V2, then
(s′, α) ∈ ROut(T,π)(Fs \ Cs), but we know that it is empty (lemma 4.3). Thus t ∈ V2,
implying α ∈ π2(s′) ̸= ∅. Also, π2(s′) ⊆ π(s′) ⊆ A[s′].

• Let s′ ∈ V2, α ∈ π2(s′), t ∈ S such that δ(s′, α, t) > 0. Since π2(s′) ⊆ π(s′) and (T, π) is
a sub-MDP, t ∈ T . If t ̸∈ V2 = Fs \ Cs, then (s′, α) ∈ ROut(T,π)(Fs \ Cs), but we know
that it is empty (lemma 4.3). Thus, t ∈ V2.

Claim 2: (V2, π2) is MEC-closed. Proof: Take any s1 ∈ V2. Suppose MECM(s1) = (Ts1 , πs1).
We will show that (Ts1 , πs1) ⊆ (V2, π2). Since (T, π) is MEC-closed and s1 ∈ V2 ⊆ T ,
(Ts1 , πs1) ⊆ (T, π).
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• Let s2 ∈ Ts1 . From the definition of an MEC, s1 can reach s2 in (Ts1 , πs1). Since
(Ts1 , πs1) ⊆ (T, π), s1 can reach s2 in (T, π). Since s1 ∈ Fs, this implies s2 ∈ Fs.
Further, if s2 ∈ Cs, then s2 can reach s, so s1 can reach s, contradicting the fact that
s1 ∈ Fs \ Cs. Thus, s2 ∈ Fs \ Cs. Since s2 was arbitrary, we get Ts1 ⊆ V2.

• Let s2 ∈ Ts1 , α ∈ πs1(s2). Since (Ts1 , πs1) is a sub-MDP, there is t ∈ Ts1 such that
δ(s2, α, t) > 0. As Ts1 ⊆ V2, we have t ∈ V2. Then, by definition, α ∈ π2(s2). Thus,
πs1(s2) ⊆ π2(s2) for all s2 ∈ Ts1 .

Lemma 4.8. Let (T, π) be an MEC-closed sub-MDP of some MDP M = (S, A, dinit, δ) and
(V, E) = GEBA(T, π). Consider the execution of MEC-Decomp-Interleave(V, E{v}) where
{v} = ∅ or v ∈ V . If {v} = ∅, let s ∈ V be the vertex picked on line 1. Otherwise, let s = v.
If V3 ̸= ∅, then (V3, E3 ∩ (V3 × A × V3)) = GEBA(T3, π3) for some MEC-closed sub-MDP
(T3, π3).

Proof. Define, for all s′ ∈ V3, π3(s′) = {α ∈ A | ∃t ∈ V3 . (s′, α, t) ∈ E3}. It is clear from
this definition that (V3, E3 ∩ (V3 × A× V3)) = GEBA(V3, π3).

Claim 1: (V3, π3) is a sub-MDP. Proof: V3 ̸= ∅ from assumption.
• For any state s′ ∈ V3, there must be some α ∈ π(s′) such that (s′, α) ̸∈ X3. This is

because, if not, then, from the definition of Attr, we will have s′ ∈ U3, contradicting
the fact that s′ ∈ V3 = (V \ Fs) \ U3. Now, since α ∈ π(s′), there is some t ∈ T
such that (s′, α, t) ∈ E. We have (s′, α, t) ∈ E3 since (s′, α) ̸∈ X3. If t ∈ U3, then
(s′, α) ∈ X3 (definition of Attr). If t ∈ Fs, then (s′, α) ∈ ROut(T,π)(V \ Fs), and
thus (s′, α) ∈ X3. These contradict the fact that (s′, α) ̸∈ X3. Thus, we must have
t ∈ V3. So (s′, α, t) ∈ E3 ∩ (V3 × A × V3), and thus α ∈ π3(s′) ̸= ∅. We also have
π3(s′) ⊆ π(s′) ⊆ A[s′].

• Suppose s′ ∈ V3, α ∈ π3(s′), t ∈ S such that δ(s′, α, t) > 0. Since π3(s′) ⊆ π(s′), t ∈ T .
If t ∈ Fs or t ∈ U3, then (s′, α) ∈ X3, which contradicts the fact that α ∈ π3(s′). Thus
t ∈ V3.

Claim 2: (V3, π3) is MEC-closed. Proof: Take any s1 ∈ V3. Suppose MECM(s1) = (Ts1 , πs1).
We will show that (Ts1 , πs1) ⊆ (V3, π3). Since (T, π) is MEC-closed and s1 ∈ V3 ⊆ T ,
(Ts1 , πs1) ⊆ (T, π).

• Now, for any s2 ∈ Ts1 , from the definition of an MEC, s2 can reach s1 in (Ts1 , πs1).
Since (Ts1 , πs1) ⊆ (T, π), s2 can also reach s1 in (T, π). So, since s1 ∈ V \ Fs, we have
s2 ∈ V \ Fs. Now, if s2 ∈ U3, then, from lemma 4.4, it cannot be in any MEC. Thus
s2 ∈ (V \ Fs) \ U3 = V3. This shows that Ts1 ⊆ V3.

• Take any s2 ∈ Ts1 and α ∈ πs1(s2). Since (Ts1 , πs1) is a sub-MDP, there exists
t ∈ Ts1 ⊆ V3 such that δ(s2, α, t) > 0. Further, (s2, α, t) ∈ E3 because if not, then
(s2, α) ∈ X3 which is not possible due to lemma 4.4. The previous two assertions imply
that α ∈ π3(s2). Thus, πs1(s2) ⊆ π3(s2) for all s2 ∈ Ts1 .
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Finally, we are ready to prove the correctness of our algorithm.

Theorem 4.9. Let M = (S, A, dinit, δ) be an MDP, (T, π) be an MEC-closed sub-MDP of
M and GEBA(T, π) = (V, E). Then, MEC-Decomp-Interleave(V, E{v}) where {v} = ∅ or
v ∈ V outputs the graph representations of all MECs in MECsM(T ).

Proof. Proof is by strong induction on the number of edges in GEBA(T, π) = (V, E). Note
that from definitions 2.3 and 2.15, V must have at least one vertex and each vertex must
have at least one outgoing edge.

Base Case (|E| = 1): If {v} = ∅, let s ∈ V be the vertex picked on line 1. In this
case, since every vertex has at least one outgoing edge, V must have just one vertex. So
(V, E) = ({s}, {(s, α, s)}) and (T, π) = ({s}, s 7→ {α}).

We have Fs = Cs = {s}, so ROut(T,π)(Cs), from the definition of ROut, is equal to ∅ (note
that we must have δ(s, α, s) = 1 since (T, π) is a sub-MDP). Then, Attr(T,π)(∅) is equal to ∅
(definition of Attr). So our algorithm will output (Cs, E ∩ (Cs ×A×Cs)) = ({s}, {(s, α, s)})
as an MEC. This is indeed the MEC of s (also the only MEC in (T, π)) because (T, π)
is MEC-closed, i.e., MECM(s) ⊆ (T, π), and an MEC must have at least one state and
state-action pair. Note also that since V \ Fs = ∅ and Fs \ Cs = ∅, there will be no recursive
calls.

Induction Hypothesis: For some k ∈ N, for all sub-MDPs (T, π) with GEBA(T, π) =
(V(T,π), E(T,π)) and |E(T,π)| ≤ k, MEC-Decomp-Interleave(V(T,π), E(T,π), {v}) with v ∈ V(T,π)

or {v} = ∅ outputs the graph representations of all MECs of (T, π).

Induction Step (|E| = k + 1): Let (V, E) = GEBA(T, π) and |E| = k + 1. Con-
sider the call MEC-Decomp-Interleave(V, E, {v}). If {v} = ∅, let s ∈ V be the vertex
picked on line 1. Otherwise, let s = v. To simplify this proof, assume that a call
MEC-Decomp-Interleave(V ′, E ′, {v′}) with V ′ = ∅ doesn’t output anything and simply
returns (this preserves the behaviour of the algorithm since such a call is never made).

1. If X1 = ∅, then the algorithm outputs (Cs, E∩(Cs×A×Cs)), which from theorem 4.5, is
GEBA(MECM(s)). If X1 ̸= ∅, then the recursive call MEC-Decomp-Interleave(V1, E1∩
(V1 × A × V1), ∅) is made. From the induction hypothesis (can apply due to lemma
4.6), it outputs {GEBA(MECM(s′)) | s′ ∈ V1}. Since V1 = Cs \ U1 and no state in U1
has an MEC (lemma 4.2), this is equal to {GEBA(MECM(s′)) | s′ ∈ Cs}. Thus the
algorithm outputs {GEBA(MECM(s′)) | s′ ∈ Cs} in both cases.

2. From the induction hypothesis (can apply due to lemma 4.7), the recursive call
MEC-Decomp-Interleave(V2, E2 ∩ (V2 × A × V2), {v′}) outputs {GEBA(MECM(s′)) |
s′ ∈ V2}. We know V2 = Fs \ Cs. Thus the algorithm outputs {GEBA(MECM(s′)) |
s′ ∈ Fs \ Cs}.

3. From the induction hypothesis (can apply due to lemma 4.8), the recursive call
MEC-Decomp-Interleave(V3, E3 ∩ (V3×A× V3), ∅) outputs {GEBA(MECM(s′)) | s′ ∈
V3}. From lemma 4.4, no state in U3 is in an MEC, thus since V3 = (V \ Fs) \ U3,
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this is equal to {GEBA(MECM(s′)) | s′ ∈ (V \ Fs)}. So, the algorithm outputs
{GEBA(MECM(s′)) | s′ ∈ V \ Fs}.

Putting the above three points together, the algorithm outputs {GEBA(MECM(s′)) | s′ ∈ V }.
Since T = V , this completes the proof of the theorem.
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Chapter 5

Evaluation

The two MEC decomposition algorithms LOCKSTEP and COLLAPSING by Chatterjee et al.
[CHL+18, CDHS21] are "better" than the NAIVE algorithm in terms of the asymptotic number
of symbolic operations in the worst-case. However, this doesn’t necessarily mean that they
will be faster on a given MDP. In fact, [Fab23b] found "that the worst-case instances in which
LOCKSTEP and COLLAPSING improve upon NAIVE do not occur often enough in order to yield
a lower amount of symbolic operations.". There are a couple of subtleties in interpreting the
worst-case asymptotic symbolic operations bound:

1. These are "worst-case" bounds. The MDPs for which the worst case occurs may
not occur in most applications. So it is important to measure the performance on
benchmarks derived from applications of probabilistic model checkers.

2. They provide a bound on the number of symbolic operations. However, the time taken
for a symbolic operation depends on the size of the BDDs involved. Many operations
on small BDDs may be faster than few operations on large BDDs.

Both of these stress the importance of performance evaluation on real-world benchmarks.
In this chapter, we will measure the runtime and number of symbolic operations for the
NAIVE, LOCKSTEP, and INTERLEAVE algorithms on the Quantitative Verification Benchmark
Set (QVBS) [HKP+19].

Note: We do not evaluate the COLLAPSING algorithm in this thesis since it works on the
GVBA representation and model checkers natively use the GEBA representation. However,
[Fab23b] gave an algorithm to convert from GEBA to GVBA and then run the COLLAPSING
algorithm. They found that COLLAPSING on GVBA was competitive with NAIVE on GVBA,
but NAIVE on GEBA was the fastest across all algorithms for all benchmarks.

NAIVE on GEBA is thus the state-of-the-art in terms of runtime performance on the Quanti-
tative Verification Benchmark Set. Since we compare INTERLEAVE against NAIVE on GEBA

and show that INTERLEAVE is faster on almost all (except 7) benchmarks, it is reasonable
to conclude that INTERLEAVE is faster on the QVBS than the COLLAPSING algorithm with
the converted GVBA representation, although, since their conversion algorithm doesn’t give
the "best" GVBA representation (see [Fab23b] for details), this evaluation of COLLAPSING
might not be representative. It remains to be seen how COLLAPSING with a "native" GVBA

representation would perform.

https://qcomp.org/benchmarks/
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5.1 Setup
Implementation. The implementations of NAIVE and LOCKSTEP were taken from Faber’s
implementations [Fab23a] in a custom build of the model checker STORM [HJK+22]. We
adapted them to a newer version of STORM and added an implementation of the INTERLEAVE
algorithm in the same format as the others. All three used the same implementation of the
SKELETON SCC decomposition algorithm [GPP03]. We converted the recursive INTERLEAVE
algorithm specified in the thesis to an iterative form for implementation. All the code can
be found at this GitHub repository: https://github.com/Ramneet-Singh/storm-masters-
thesis/tree/stable.

Benchmarks. The benchmarks consist of the Quantitative Verification Benchmark Set
(QVBS) [HKP+19], of which all MDP models and the underlying MDPs of the Markov
automata models were considered. Storm constructs the MDPs in their GEBA representation.
For the BDD operations, STORM supports either using the CUDD libary [Som05] or the multi-
threaded library Sylvan [vD15]. We used the CUDD library.

For each of the 379 benchmarks, Storm constructed the GEBA representation and computed
an MEC decomposition with a total time limit of four minutes. There were 168 benchmarks
on which at least one algorithm finished in time, and 128 benchmarks on which all three
algorithms finished in time. We will focus on the 168 benchmarks in which at least one
algorithm finished in time for measuring the runtime performance. On the 128 benchmarks
on which all algorithms terminated in time, we measured the number of symbolic operations
performed by each algorithm. We counted each non-basic set operation (like exists) on
the (bigger) transition BDDs (complexity analyses usually focus on the number of Pre/Post
operations, which amount to essentially the same thing).

Hardware. All benchmarks were performed on machines equipped with Intel(R) Xeon(R)
CPU E5-2695 v2 processors running at 2.40GHz. The machines had 8 cores and 8 GB RAM,
and the maximum memory used by CUDD was set to 4 GB for each benchmark.

5.2 MEC Decomposition Performance
In this section, we will look at the runtimes and number of symbolic operations of the
INTERLEAVE, NAIVE, and LOCKSTEP algorithms on the QVBS. It has 379 benchmarks contain-
ing MDPs and Markov automata in total, out of which 11 are not supported by the STORM
model checker (so the MDP model can’t be built), leaving 368. Out of these, these are the
number of benchmarks solved without timing out by each algorithm. NAIVE solved all 128
that LOCKSTEP did, and INTERLEAVE solved all 149 that NAIVE did. On the 149 benchmarks
that both solved, INTERLEAVE had an average speedup of 2.24x over NAIVE.
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Algorithm Number of Benchmarks Solved

NAIVE 149

LOCKSTEP 128

INTERLEAVE 168

Table 5.1: Summary of the Number of QVBS Benchmarks Solved by Different Algorithms
Within Timeout

5.2.1 Quantile Plot for Runtime

Figure 5.1 is a quantile plot of the runtimes of the algorithms on the 168 benchmarks that
at least one algorithm solved within the timeout. A point (x, y) on the line for an algorithm
means that it was able to solve x benchmarks within y seconds of runtime.

Figure 5.1: Quantile Plot of the Runtimes of Different Symbolic MEC Decomposition Algo-
rithms on the QVBS

It is clear from the plot that given the same time-limit, NAIVE is able to solve more benchmarks
than LOCKSTEP, and INTERLEAVE is able to solve more benchmarks than NAIVE. However, this
doesn’t necessarily mean that the runtime for each benchmark follows this order. To explore
this, we will now look at pairwise scatter plots of the runtimes of each pair of algorithms for
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individual benchmarks.

5.2.2 Pairwise Runtime Comparison on Individual Benchmarks

Figure 5.2: Scatter Plot of the Runtimes of NAIVE and LOCKSTEP on Individual QVBS
Benchmarks

From figure 5.2, it is clear that the runtime of the NAIVE algorithm is less than or equal to
the runtime of the LOCKSTEP algorithm for all benchmarks. The points on the red horizontal
line with x < 250 represent the 21 benchmarks that NAIVE solved and LOCKSTEP timed out
on, while the farthest point on the red horizontal line represents the 19 benchmarks that
both of these timed out on.
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Figure 5.3: Scatter Plot of the Runtimes of LOCKSTEP and INTERLEAVE on Individual QVBS
Benchmarks

Figure 5.3 shows that the runtime of the INTERLEAVE algorithm is less than or equal to the
runtime of the LOCKSTEP algorithm for all benchmarks. The points on the red vertical line
represent the 40 benchmarks that INTERLEAVE solved and LOCKSTEP timed out on.
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Figure 5.4: Scatter Plot of the Runtimes of NAIVE and INTERLEAVE on Individual QVBS
Benchmarks

Figure 5.4 shows that there are 7 benchmarks for which the INTERLEAVE algorithm is slower
than the NAIVE algorithm, and for the rest 142 that they both solved, INTERLEAVE is faster
or matches the runtime of NAIVE. For small running times, their runtimes are similar, but
performance diverges as running time increases. Most benchmarks with large running time
have INTERLEAVE as faster, while a few have NAIVE as faster. The points on the red vertical
line represent the 19 benchmarks that INTERLEAVE solved and NAIVE timed out on.

5.2.3 Quantile Plot for Number of Symbolic Operations

Figure 5.5 is a quantile plot of the number of symbolic operations performed by the algorithms
on the 128 benchmarks that all algorithms solved within the timeout. A point (x, y) on
the line for an algorithm means that it was able to solve x benchmarks with the number of
symbolic operations being less than y.
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Figure 5.5: Quantile Plot of the Number of Symbolic Operations Performed by Different
Symbolic MEC Decomposition Algorithms on the QVBS

It is clear from the plot that excepting very low limits, given the same limit on the number
of symbolic operations, LOCKSTEP is able to solve the most benchmarks. Between NAIVE
and LOCKSTEP, however, there is no clear winner. For some limits, LOCKSTEP solves more
benchmarks while NAIVE solves more for other limits. However, this only gives an idea of the
distributions of the number of symbolic operations, and doesn’t tell us how they compare
for individual benchmarks. To explore this, we will now look at pairwise scatter plots of
the number of symbolic operations performed by each pair of algorithms for individual
benchmarks.
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5.2.4 Pairwise Symbolic Operations Comparison on Individual
Benchmarks

Figure 5.6: Scatter Plot of the Number of Symbolic Operations Performed by NAIVE and
LOCKSTEP on Individual QVBS Benchmarks

From figure 5.6, it is clear that NAIVE performs fewer or equal number of symbolic operations
than LOCKSTEP on almost all benchmarks, except 4 on which LOCKSTEP performs much fewer
operations. It is interesting that this did not result in the runtime of LOCKSTEP being better
than that of NAIVE, even on these benchmarks.
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Figure 5.7: Scatter Plot of the Number of Symbolic Operations Performed by LOCKSTEP and
INTERLEAVE on Individual QVBS Benchmarks

Figure 5.7 shows that the INTERLEAVE algorithm performs fewer symbolic operations than
the LOCKSTEP algorithm for almost all benchmarks, except 4 on which LOCKSTEP performs
much fewer operations. Again, we note that even after performing much fewer operations,
LOCKSTEP was slower than INTERLEAVE on these benchmarks.
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Figure 5.8: Scatter Plot of the Number of Symbolic Operations Performed by NAIVE and
INTERLEAVE on Individual QVBS Benchmarks

From figure 5.8, it is clear that INTERLEAVE performs fewer or equal number of symbolic
operations than NAIVE on all benchmarks. This seems to correlate with the runtimes, though
the difference in runtimes is more stark.

5.2.5 Algorithmic Analysis of INTERLEAVE’s Performance

In this subsection, we will try to analyse the reasons for INTERLEAVE’s performance. To do
this, we will compare INTERLEAVE with the NAIVE algorithm, and see the difference in the
steps performed by both.

Since NAIVE first calls the SKELETON SCC decomposition function, INTERLEAVE and NAIVE
perform the exact same steps until they have found the first SCC. Then, NAIVE adds the
SCC to a queue for processing, and moves on to find other SCCs of the original graph, calling
SKELETON on Fv \ SCCv (with a new spine set) and V \ Fv. INTERLEAVE does the following
things differently:

1. Before adding the SCC to a queue for processing (i.e., making the recursive call on
SCCv), it removes the ROut and its Attr. But this would have been the first thing
NAIVE did when it picked up the SCC for processing, so it shouldn’t make a difference
in the runtime.

2. In the second recursive call, it doesn’t pass a spine set, but only a single vertex to start
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from. This also means that there is no spine to pass in the third recursive call after
one second call.

3. Before making the third recursive call on V \ Fv, it removes the ROut and its Attr.
NAIVE would have done this after computing the SCCs of V \Fv (when it would process
each SCC separately and remove its ROut and Attr), while INTERLEAVE does it before
it even starts computing the SCCs of V \ Fv. The difference is NAIVE would then have
to remove more states and state-action pairs than INTERLEAVE has to remove (since
it’s the ROut of different SCCs rather than the ROut of the entire rest of the graph).

The second point suggests that INTERLEAVE won’t be able to find SCCs as quickly as NAIVE
does. However, the third point means that INTERLEAVE removes useless states and state-
action pairs more prematurely from the rest of the graph instead of waiting for the SCCs to
be computed and then removing for each of them. Removing a few states and state-action
pairs from a large set may be preferrable to removing many states and state-action pairs
from many small sets. Further, removing them prematurely also change the SCCs computed,
but that would have to happen anyway, so INTERLEAVE manages to avoid some unnecessary
computation. This also agrees with the observation that INTERLEAVE generally performs
fewer symbolic operations, and so is our hypothesis for why INTERLEAVE performs well
empirically.
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Chapter 6

Conclusion and Future Work

In summary, this thesis presents a novel symbolic algorithm for the MEC Decomposition of
MDPs. The main insight behind the algorithm is to interleave the computation of MECs
with the computation of SCCs (which is done anyway by existing algorithms) instead of
doing them in two separate phases. We believe that this idea is a promising one, and provides
a simple basic algorithm upon which to build. There are various possible avenues for future
work:

1. As we have seen, the worst-case complexity of INTERLEAVE is O(n2) symbolic operations
and O(log n) symbolic space for an MDP with n vertices and m edges. It would be
exciting to see a symbolic algorithm using a similar idea and also achieving better
worst-case complexity. In particular, we tried to use the ideas of a skeleton and spine
set from the SKELETON algorithm for this, but failed. We have included the problems
we faced and how we ended up with INTERLEAVE in this thesis (see section 4.5), in the
hope that future work may solve them.

2. Algorithms like LOCKSTEP and COLLAPSING have been built to work with the GVBA
representation instead of the GEBA representation that model checkers use. While it is
possible to write LOCKSTEP to deal with GEBA without changing the algorithm much,
this is not possible for COLLAPSING. Faber’s thesis [Fab23b] got around this problem
by converting the GEBA to (not necessarily the best possible) GVBA before passing it to
COLLAPSING. But it remains to be seen how COLLAPSING would perform with a "native"
GVBA representation. We believe that the construction of these representations, and
the difference in performance of algorithms on them is an important area for future
work.

3. Chapter 5 showed that there is a chasm between the empirical performance of algorithms
(at least on the QVBS) and their worst-case symbolic complexity. This implies a gap in
our understanding of the classes of MDPs for which each algorithm is well-suited. For
example, it may be the case that the MDPs which occur in benchmarks do not trigger
the O(n2) worst-case for NAIVE and INTERLEAVE. We can’t analyse the algorithms
well-enough (yet) to reason about their empirical performance on different MDPs. This
is another promising direction for future work.
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