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Reinforcement Learning (RL)
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RL Algorithm

• Policy refinement loop

• Policy updated after 
sampling the 
environment
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RL Algorithm

• Policy refinement loop

• Policy updated after 
sampling the 
environment

• Generate policy that 
optimizes total reward
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System/Agent
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Rewards encode desired task



Hard to encode task with rewards
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Environment: Continuous domain is ℝ2, Initially in 𝑆0

Task: Visit 𝑆1 or 𝑆2, then visit 𝑆3. Always avoid 𝑂.

count   =   0    # global variable

def get_rewards(s):
if state.at(O) :

return -10
if count  ==  0   and state.at(𝑆1) :

count  =  1
if count  ==  0   and state.at(𝑆2) :

count  =  1
if count  ==  1   and state.at(𝑆3) :

count  =  0
return 1

return 0
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Logical specifications 
to encode tasks? 



RL from Logical Specification
Learns policy that optimizes (probability of) satisfaction of  
specification

[1] A Framework for Transforming Specifications in Reinforcement Learning. Rajeev Alur, Suguman Bansal, Osbert Bastani, 

Kishor Jothimurugan. ArXiv 2021

[2] Compositional Reinforcement Learning from Logical Specifications. Kishor Jothimurugan, Suguman Bansal, Osbert 

Bastani and Rajeev Alur. NeurIPS 2021

Weak Theoretical Guarantees

• No algorithm for optimal policy 
so far

• Non-existence of PAC 
algorithm for near-optimal 

Practical Algorithms

• Compositional RL from logical 
specifications

• Works on continuous environments



SOTA in Practical Algorithms

Environment: Continuous domain is ℝ2, Initial state in 𝑆0
Task: Visit 𝑆1 or 𝑆2, then visit 𝑆3. Always avoid 𝑂.
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DiRL (Ours)



Contributions

Leverage structure of logical specification to scale to long horizon 
tasks?

Novel compositional algorithm 

DiRL = 

High-level planning on specification

+

Low-level RL on environment
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Markov Decision Process (MDP)

Environment is an MDP 𝑀 = 𝑆, 𝐴, 𝑃, 𝜂

• 𝑆 is the set of states

• 𝐴 is the set of actions 

• 𝑃 ∶ 𝑆 × 𝐴 × 𝑆 → [0,1] is the transition probability
• 𝑃(𝑠, 𝑎, 𝑠′) is the probability of transitioning to 𝑠′ from 𝑠 on action 𝑎

• 𝜂 ∶ 𝑆 → 0,1 is the initial state distribution
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SpectRL
[Jothimurugan, Bastani, Alur; NeurIPS 2019]

Logical specification language
• Temporal logic over predicates on the environment states
• Predicates map environment states to {True, False}

Syntax:   𝜑 ∶= eventually b | 𝜑 ensuring b | 𝜑 ; 𝜑 | 𝜑 or 𝜑

Example:  “Visit 𝑆1 or 𝑆2 while avoiding 𝑂”
((eventually Visit 𝑆1) or (eventually Visit 𝑆2)) ensuring (Avoid 𝑂)

where, predicate Visit 𝑋 is true in env. state 𝑠 iff 𝑠 ∈ 𝑋
predicate Avoid 𝑋 is true in env. state 𝑠 iff 𝑠 ∉ 𝑋
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RL from Specifications

Given, 
Environment M (MDP) with unknown transition probability
SpectRL specification 𝝋

Generate, 
Policy P : (S × A)* × S -> D(A) s.t.
Probability that policy P satisfies 𝝋 is maximized in M
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Challenge: Myopia in RL 

RL is good at short-horizon tasks but poor at long-horizon tasks
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Number of samples

Visit (𝑆1 or 𝑆2)
while avoiding 𝑂

Learns to visit 𝑆2 via obstacle-free path



Challenge: Myopia in RL 

RL is good at short-horizon tasks but poor at long-horizon tasks
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Visit (𝑆1 or 𝑆2) then Visit 𝑆3
while avoiding 𝑂

Futile to learn to visit 𝑆2
Better to learn to visit 𝑆1
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DiRL =  High-level planning + Low-level RL
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Decompose specification to subtasks

Learn policies for subtask
Use off-the-shelf RL

Plan/Compose to compute best policy



Decompose 

SpectRL specifications are transformed to a DAG-like structure called 
abstract graph 
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Visit (𝑆1 or 𝑆2) then Visit 𝑆3
while avoiding 𝑂

Each vertex represents a set 
of states

Each edge represents a 
subtask

Final vertex



Satisfaction w.r.t. DAG-like structure
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𝜁 = ……

𝜁 = 𝑠0 𝑠𝑖2 𝑠𝑖3 ……

∈ 𝑍∉𝑂 ∈ 𝑍∉𝑂𝜻 ⊨ 𝝋 𝐢𝐟 𝐚𝐧𝐝 𝐨𝐧𝐥𝐲 𝐢𝐟 𝜻 ⊨ 𝑮𝝋



Learn + Plan

Search for path policies to maximize probability to reach final vertex in 
abstract graph 
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𝜋1
𝜋2

Path policy for 𝑆0 → 𝑆2 → 𝑆3:

Execute 𝜋1 until 𝑆2 reached;
Execute 𝜋2 until 𝑆3 reached 

From 𝑆1, Visit 𝑆3
while avoiding 𝑂



Learn + Plan: Order  of learning edges

Inefficient to learn S1-> S3 first. Explore states in topological order
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𝜋1
𝜋2

Our algorithm interleaves Dijkstra-style planning (searching for a path) 
and learning policies for edges in abstract graph

From 𝑆1, Visit 𝑆3
while avoiding 𝑂



Learn + Plan

Obtain policies along path with max. probability to reach final state in DAG 

• Learn policies for all edges (subtasks) in DAG
• Probability of edge = Estimated probability of subtask satisfaction by policy
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Learn + Plan
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Learn + Plan

Obtain policies along path with max. probability to reach final state in DAG 

• Learn policies for all edges (subtasks) in DAG
• Probability of edge = Estimated probability of subtask satisfaction by policy

• Plan best path to final state
• Final policy composes policies of edges on the best path
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DiRL =  High-level planning + Low-level RL
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Decompose specification to subtasks
Leverage DAG structure of abstract graph

Learn policies for subtask
Use off-the-shelf RL

Plan/Compose to compute best policy
Use Dijkstra-style algorithm



Empirical evaluation: Benchmark families

Rooms Environment OpenAI Gym 

Fetch-Pick-And-Place Environment

Environments with continuous states and continuous actions
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Fetch Environment



Compositional RL from Logical Specifications
@NeurIPS 2021
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• Specifications are good at describing long-horizon tasks
• RL is good at learning short-horizon tasks

• DiRL = High-level planning + Low-level RL
• Compositional algorithm

• Scales to long-horizon tasks on continuous environments

• RL from specifications in adversarial games, multi-agent systems, etc

• Compositional verification 



Compositional RL from Logical Specifications
@NeurIPS 2021

DiRL =  High-level planning  +  Low-level RL

I. Leverages structure of specification

II. Compositional algorithm

III. Improves scalability significantly

on continuous control tasks
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DiRL is open-source!


