Penn
Engmeerlng

UNIVERSITY of PENNSYLVANIA

Compositional
Reinforcement Learning from
Logical Specifications

Kishor Jothimurugan Suguman Bansal

Osbert Bastani Rajeev Alur

NeurlPS 2021

Reinforcement Learning (RL)

Environment

L

System/
Agent

Generate a policy
for system/agent

RL Algorithm

* Policy refinement loop

* Policy updated after
sampling the
environment

Unknown
Environment

System/Agent

Current policy m;

RL Algorithm

* Policy refinement loop

* Policy updated after
sampling the
environment

Unknown
Environment

Action
At

System/Agent

Current policy m;

RL Algorithm

Unknown

* Policy refinement loop Environment

* Policy updated after
sampling the
environment St+1

Action
At

State
Reward

Tt

* Generate policy that
optimizes total reward System/Agent

Current policy m;
Rewards encode desired task

Hard to encode task with rewards

Environment: Continuous domain is R?, Initially in S,
Task: Visit §; or S5, then visit S5. Always avoid O.

def get_rewards(s):

if count
if count

if count

return O

count = 0 # global variable

if state.at(O) :

return -10
== 0 and
count = 1
== 0 and
count = 1
== 1 and
count = 0
return 1

state.at(S;) :
state.at(S5) :

state.at(S5) :

Hard to encode task with rewards

Environment: Continuous domain is R?, Initially in S,

21 -

count = 1

if count == 1 and state.at(S3):
count = 0
return 1

return O

RL from Logical Specification
Learns policy that optimizes (probability of) satisfaction of

specification

Weak Theoretical Guarantees . .
Practical Algorithms

No algorithm for optimal policy « Compositional RL from logical

specifications
* \Works on continuous environments

so far
Non-existence of PAC

algorithm for near-optimal

[1] A Framework for Transforming Specifications in Reinforcement Learning. Rajeev Alur, Suguman Bansal, Osbert Bastani,

Kishor Jothimurugan. ArXiv 2021
[2] Compositional Reinforcement Learning from Logical Specifications. Kishor Jothimurugan, Suguman Bansal, Osbert

Bastani and Rajeev Alur. NeurIPS 2021

SOTA in Practical Algorithms

Environment: Continuous domain is R?, Initial state in S,
Task: Visit 57 or S,, then visit S5. Always avoid 0.

Poor Scalability

1.0
— 0.8 —— SPECTRL
o —— TLTL
— 0.6_ QRM
-(% QRM+CR
o 0.4 —— HRM
@) —— HRM+CR
a 0.2

0.0¥ 4 et

00 05 1.0 15 2.0 2156
Number of samples **°

SOTA in Practical Algorithms

Environment: Continuous domain is R?, Initial state in S,
Task: Visit 57 or S,, then visit S5. Always avoid 0.

-Poor-Scatability
0 T T Su— 4 .
+ _______ o DiRL (Ours)

- 0.8 1- ol —— SPECTRL
+ / —— TLTL
—_ 0.6 ’,’ QRM
'(% / QRM+CR
o 047 7 —— HRM
o / —— HRM+CR
a 0.2/

0.0 - i

00 05 1.0 15 20 25

6
Number of samples **°
10

Contributions

Leverage structure of logical specification to scale to long horizon
tasks?

Improved Scalability

Novel compositional algorithm
DiRL =
High-level planning on specification

o =
Qo o
\
\
\
\
\
\
\
1
1
1
1
1
i
\
\
\
\
\
\
\
A
1
1
1
1
1
1
e

—— SPECTRL
— TLTL
QRM
QRM+CR
—— HRM
—— HRM+CR
-4-- DiRL (Ours)

o
o

Probability

+

o
N

o
o

Low-level RL on environment

00 05 1.0 15 2.0 2.5
x10°

Number of samples

11

Markov Decision Process (MDP)

Environmentisan MDP M = (S, A, P,n)

e Sisthe set of states

e Aisthe set of actions

e P:S X A x §—0,1]is the transition probability
* P(s,a,s")isthe probability of transitioning to s’ from s on action a

* n: S —[0,1] is the initial state distribution

12

SpectRL

[Jothimurugan, Bastani, Alur; NeurlPS 2019]

Logical specification language
* Temporal logic over predicates on the environment states
* Predicates map environment states to {True, False}

Syntax: @ :=-eventuallyb | ¢ ensuringb | ¢ ;@ | ¢ or @

Example: “Visit §; or S, while avoiding O”
((eventually Visit S;) or (eventually Visit S,)) ensuring (Avoid O)

where, predicate Visit X is true in env. state s iff s € X
predicate Avoid X is trueinenv. state s iff s € X

13

RL from Specifications

Given,
Environment M (MDP) with unknown transition probability
SpectRL specification ¢

Generate,
Policy P: (S X A)* X S -> D(A) s.t.
Probability that policy P satisfies ¢ is maximized in M

14

Challenge: Myopia in RL

RL is good at short-horizon tasks but poor at long-

horizon tasks

1.0
0.8
0.6
0.4
0.2

Visit (57 or S5)
while avoiding O

Probability

—— SPECTRL
— TLTL
QRM
QRM+CR
—— HRM
—— HRM+CR

0.0
—0:24

Learns to visit S, via obstacle-free path

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

x10°
Number of samples

15

Challenge: Myopia in RL

RL is good at short-horizon tasks but poor at long-horizon tasks

1.0
0.8 —— SPECTRL
>
2 . —— TLTL
Visit (§; or S,) then VisitS; 5 AR
while avoiding O S 04 — HRM
e —— HRM+CR
s 02
0.0 4 Ui

00 05 1.0 15 2.0 25
x10°

Futile to learn to visit S, Number of samples

Better to learn to visit S;

16

DiRL = High-level planning + Low-level RL

[Decompose specification to subtasks }

!

Learn policies for subtask

Use off-the-shelf RL
" y

\ 4

[Plan/Compose to compute best policy]

Decompose

SpectRL specifications are transformed to a DAG-like structure called
abstract graph

Each vertex represents a set
of states

Visit (S; or S,) then Visit S5

- (%)
while avoiding O
Each edge represents a Final vertex
subtask
18

Satisfaction w.r.t. DAG-like structure

(=@ifandonlyif{ F G,

19

Learn + Plan

Search for path policies to maximize probability to reach final vertex in

abstract graph
From §;, Visit S5

while avoiding O

Path policy for Sy = S, — S5

20

Learn + Plan: Order of learning edges

Inefficient to learn S1-> S3 first. Explore states in topological order

From §;, Visit S5
while avoiding O

Our algorithm interleaves Dijkstra-style planning (searching for a path)
and learning policies for edges in abstract graph

21

Learn + Plan

Obtain policies along path with max. probability to reach final state in DAG

 Learn policies for all edges (subtasks) in DAG
* Probability of edge = Estimated probability of subtask satisfaction by policy

22

Learn + Plan

Obtain policies along path with max. probability to reach final state in DAG

 Learn policies for all edges (subtasks) in DAG
* Probability of edge = Estimated probability of subtask satisfaction by policy

23

Learn + Plan

Obtain policies along path with max. probability to reach final state in DAG

 Learn policies for all edges (subtasks) in DAG
* Probability of edge = Estimated probability of subtask satisfaction by policy

24

Learn + Plan

Obtain policies along path with max. probability to reach final state in DAG

 Learn policies for all edges (subtasks) in DAG
* Probability of edge = Estimated probability of subtask satisfaction by policy

25

Learn + Plan

Obtain policies along path with max. probability to reach final state in DAG

 Learn policies for all edges (subtasks) in DAG
* Probability of edge = Estimated probability of subtask satisfaction by policy

26

Learn + Plan

Obtain policies along path with max. probability to reach final state in DAG

 Learn policies for all edges (subtasks) in DAG
* Probability of edge = Estimated probability of subtask satisfaction by policy

27

Learn + Plan

Obtain policies along path with max. probability to reach final state in DAG

 Learn policies for all edges (subtasks) in DAG
* Probability of edge = Estimated probability of subtask satisfaction by policy

* Plan best path to final state
* Final policy composes policies of edges on the best path

28

DiRL = High-level planning + Low-level RL

Decompose specification to subtasks
Leverage DAG structure of abstract graph

!

Learn policies for subtask

Use off-the-shelf RL
" y

Plan/Compose to compute best policy
Use Dijkstra-style algorithm

Empirical evaluation: Benchmark families

Environments with continuous states and continuous actions

OpenAl Gym
Fetch-Pick-And-Place Environment

Rooms Environment

Rooms Environment

1.2
> :
= 0.6 spectrL
r —— TLTL
4]
g 04 o
~ 021 QRM+CR
—— HRM
0.07 — HRM+CR
_0.2 -4-- DIRL (Ours)
0.0 05 1.0 15 20 25 3.0

x10°
Number of samples

31

Rooms Environment

Probability

1.2
1.0+
0.8-
0.6-
0.4
0.2

0.0

_0‘2 i

SPECTRL
TLTL

QRM
QRM+CR
HRM
HRM+CR
DiRL (Ours)

- ——— -

4 5 6
x 106

Number of samples

32

Rooms Environment

Probability

| —— SPECTRL
| — TLTL o _ e o

| —— HRM+CR
| -4- DiRL (QOurs)
I

QRM
QRM+CR
— HRM

2 4 6 8
x10°
Number of samples

33

Rooms Environment

1.0 + J S P 0—————- ‘
0.8 e —— SPECTRL
, — TLTL
£ 06 | QRM
o i QRM+CR
S 041 ! —— HRM
o ! —— HRM+CR
(ol r" g)
0.2 :, 4-- DIRL (Ours)
N e ——
0.0 0.2 04 06 0.8 1.0 1.2 1.4
x107

Number of samples

34

Rooms Environment

1 0 N S — PR 4
bt
0.8 {'
—— SPECTRL
fy ! QRM
I = 0.6 i QRM+CR
© ! —— HRM
2 041/ —— HRM+CR
& i -4-- DiRL (Ours)
0.2 :'
0.0+ . . . _
0.0 0.5 1.0 1.5 2.0
x 107

Number of samples

35

Fetch Environment

1.0 1.0/
—— SPECTRL -4 —— SPECTRL . —— SPECTRL
QRM ,+--—‘+’ QRM ,/+"" + 1.0; QRM
0.81 QRM+CR o 0.81 QRM+CR s’ QRM+CR /——'4
—— HRM —— HRM P 0.84 — HRM -
0.6/ — HRM+CR i 0.6/ — HRM+CR e —— HRM+CR AT
-4- DiRL (Ours) .~ -4- DRL(Ours) - 0.6{ -4- DRL(Ours) -~
0.4) /4’,, 0'4 | ’,,//, 04 7 I,!//
0.2 /’/ 0.2 //" 02 ’/,/'
00— —] e —————— 0.0 = e ——
00 02 04 06 08 1.0 1.2 14 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 0.0 0.5 1.0 15 20 25 3.0 35
x10° x10° x10°
(a) PickAndPlace (b) PickAndPlaceStatic (c) PickAndPlaceChoice

36

Compositional RL from Logical Specifications
@NeurlPS 2021

* Specifications are good at describing long-horizon tasks
 RLis good at learning short-horizon tasks

* DiRL = High-level planning + Low-level RL
* Compositional algorithm
* Scales to long-horizon tasks on continuous environments

* RL from specifications in adversarial games, multi-agent systems, etc
 Compositional verification

Compositional RL from Logical Specifications
@NeurlPS 2021

DiRL = High-level planning + Low-level RL DiRL is open-source!

'Ellll |||I I ||i|E
([=] s i]
H "'\'i:u"'.' lifif
|I|Hlilr " II ||‘II|| |::

|. Leverages structure of specification

II. Compositional algorithm

Ill. Improves scalability significantly
on continuous control tasks

