

# Compositional Reinforcement Learning from Logical Specifications

Kishor Jothimurugan

Suguman Bansal

Osbert Bastani

Rajeev Alur

**NeurIPS 2021** 

#### Reinforcement Learning (RL)

Environment



System/ Agent

Generate a **policy** for system/agent



#### RL Algorithm

- Policy refinement loop
- Policy updated after sampling the environment



System/Agent Current policy  $\pi_t$ 

#### RL Algorithm

Policy refinement loop

 Policy updated after sampling the environment



#### RL Algorithm

- Policy refinement loop
- Policy updated after sampling the environment
- Generate policy that optimizes total reward



Rewards encode desired task

#### Hard to encode task with rewards

Environment: Continuous domain is  $\mathbb{R}^2$ , Initially in  $S_0$ 

Task: Visit  $S_1$  or  $S_2$ , then visit  $S_3$ . Always avoid O.



```
count = 0 # global variable
def get_rewards(s):
         if state.at(O):
                  return -10
         if count == 0 and state.at(S_1):
                  count = 1
         if count == 0 and state.at(S_2):
                  count = 1
         if count == 1 and state.at(S_3):
                  count = 0
                  return 1
         return 0
```

#### Hard to encode task with rewards

Environment: Continuous domain is  $\mathbb{R}^2$ , Initially in  $S_0$ 

# Logical specifications to encode tasks?



```
\begin{array}{c} \text{count } = 0 \quad \text{and} \quad \text{State.at}(S_2) \, . \\ \text{count } = 1 \\ \text{if } \text{count } = 1 \quad \text{and} \quad \text{state.at}(S_3) \, : \\ \text{count } = 0 \\ \text{return } 1 \\ \end{array}
```

#### RL from Logical Specification

Learns policy that optimizes (probability of) satisfaction of specification

#### **Weak Theoretical Guarantees**

- No algorithm for optimal policy so far
- Non-existence of PAC algorithm for near-optimal

#### **Practical Algorithms**

- Compositional RL from logical specifications
- Works on continuous environments

- [1] A Framework for Transforming Specifications in Reinforcement Learning. Rajeev Alur, Suguman Bansal, Osbert Bastani, Kishor Jothimurugan. ArXiv 2021
- [2] Compositional Reinforcement Learning from Logical Specifications. Kishor Jothimurugan, Suguman Bansal, Osbert Bastani and Rajeev Alur. NeurIPS 2021

#### SOTA in Practical Algorithms

Environment: Continuous domain is  $\mathbb{R}^2$ , Initial state in  $S_0$ 

Task: Visit  $S_1$  or  $S_2$ , then visit  $S_3$ . Always avoid O.



#### **Poor Scalability**



#### SOTA in Practical Algorithms

Environment: Continuous domain is  $\mathbb{R}^2$ , Initial state in  $S_0$ 

Task: Visit  $S_1$  or  $S_2$ , then visit  $S_3$ . Always avoid O.





#### Contributions

Leverage structure of logical specification to scale to long horizon tasks?

Novel compositional algorithm

DiRL =

High-level planning on specification

+

Low-level RL on environment

#### Improved Scalability



#### Markov Decision Process (MDP)

#### **Environment** is an MDP $M = (S, A, P, \eta)$

- *S* is the set of states
- A is the set of actions
- $P: S \times A \times S \rightarrow [0,1]$  is the transition probability
  - P(s, a, s') is the probability of transitioning to s' from s on action a
- $\eta: S \to [0,1]$  is the initial state distribution

#### SpectRL

[Jothimurugan, Bastani, Alur; NeurIPS 2019]

#### Logical specification language

- Temporal logic over predicates on the environment states
- Predicates map environment states to {True, False}

```
Syntax: \varphi := \text{eventually } b \mid \varphi \text{ ensuring } b \mid \varphi ; \varphi \mid \varphi \text{ or } \varphi
```

Example: "Visit  $S_1$  or  $S_2$  while avoiding O" ((eventually Visit  $S_1$ ) or (eventually Visit  $S_2$ )) ensuring (Avoid O)

where, predicate Visit X is true in env. state s iff  $s \in X$  predicate Avoid X is true in env. state s iff  $s \notin X$ 

#### RL from Specifications

Given, Environment **M** (MDP) with unknown transition probability SpectRL specification  $\boldsymbol{\varphi}$ 

Generate, Policy  $P: (S \times A)^* \times S \rightarrow D(A)$  s.t. Probability that policy P satisfies  $\varphi$  is maximized in M

#### Challenge: Myopia in RL

RL is good at short-horizon tasks but poor at long-horizon tasks



Visit  $(S_1 \text{ or } S_2)$  while avoiding O



Number of samples

Learns to visit  $S_2$  via obstacle-free path

#### Challenge: Myopia in RL

RL is good at short-horizon tasks but poor at long-horizon tasks



Visit  $(S_1 \text{ or } S_2)$  then Visit  $S_3$  while avoiding O



Futile to learn to visit  $S_2$ Better to learn to visit  $S_1$ 

#### DiRL = High-level planning + Low-level RL

Decompose specification to subtasks Learn policies for subtask Use off-the-shelf RL Plan/Compose to compute best policy

#### Decompose

SpectRL specifications are transformed to a DAG-like structure called abstract graph



#### Satisfaction w.r.t. DAG-like structure



 $\zeta \vDash \varphi$  if and only if  $\zeta \vDash G_{\varphi}$ 

Search for **path policies** to maximize probability to reach final vertex in abstract graph



Path policy for  $S_0 \rightarrow S_2 \rightarrow S_3$ :

Execute  $\pi_1$  until  $S_2$  reached; Execute  $\pi_2$  until  $S_3$  reached

#### Learn + Plan: Order of learning edges

Inefficient to learn S1-> S3 first. Explore states in topological order



Our algorithm interleaves Dijkstra-style planning (searching for a path) and learning policies for edges in abstract graph

- Learn policies for all edges (subtasks) in DAG
  - Probability of edge = Estimated probability of subtask satisfaction by policy



- Learn policies for all edges (subtasks) in DAG
  - Probability of edge = Estimated probability of subtask satisfaction by policy



- Learn policies for all edges (subtasks) in DAG
  - Probability of edge = Estimated probability of subtask satisfaction by policy



- Learn policies for all edges (subtasks) in DAG
  - Probability of edge = Estimated probability of subtask satisfaction by policy



- Learn policies for all edges (subtasks) in DAG
  - Probability of edge = Estimated probability of subtask satisfaction by policy



- Learn policies for all edges (subtasks) in DAG
  - Probability of edge = Estimated probability of subtask satisfaction by policy



- Learn policies for all edges (subtasks) in DAG
  - Probability of edge = Estimated probability of subtask satisfaction by policy



- Plan best path to final state
  - Final policy composes policies of edges on the best path

#### DiRL = High-level planning + Low-level RL

Decompose specification to subtasks Leverage DAG structure of abstract graph



Learn policies for subtask
Use off-the-shelf RL



#### Empirical evaluation: Benchmark families

Environments with continuous states and continuous actions

























#### Fetch Environment



(a) PickAndPlace



(b) PickAndPlaceStatic



(c) PickAndPlaceChoice

## Compositional RL from Logical Specifications @NeurIPS 2021

- Specifications are good at describing long-horizon tasks
- RL is good at learning short-horizon tasks
- DiRL = High-level planning + Low-level RL
  - Compositional algorithm
  - Scales to long-horizon tasks on continuous environments
- RL from specifications in adversarial games, multi-agent systems, etc.
- Compositional verification

## Compositional RL from Logical Specifications @NeurIPS 2021

DiRL = High-level planning + Low-level RL

- I. Leverages structure of specification
- II. Compositional algorithm
- III. Improves scalability significantly on continuous control tasks

DiRL is open-source!

