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Reinforcement Learning (RL)

Environment

L

System/
Agent

Generate a policy
for system/agent



RL Algorithm

* Policy refinement loop
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RL Algorithm

Unknown

* Policy refinement loop Environment
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* Generate policy that
optimizes total reward System/Agent

Current policy m;
Rewards encode desired task



Hard to encode task with rewards

Environment: Continuous domain is R?, Initially in S,
Task: Visit §; or S5, then visit S5. Always avoid O.

def get_rewards(s):

if count
if count

if count

return O

count = 0 # global variable

if state.at(O) :

return -10
== 0 and
count = 1
== 0 and
count = 1
== 1 and
count = 0
return 1

state.at(S;) :
state.at(S5) :

state.at(S5) :




Hard to encode task with rewards

Environment: Continuous domain is R?, Initially in S,
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count = 1

if count == 1 and state.at(S3):
count = 0
return 1

return O




RL from Logical Specification
Learns policy that optimizes (probability of) satisfaction of

specification

Weak Theoretical Guarantees . .
Practical Algorithms

No algorithm for optimal policy « Compositional RL from logical

specifications
* \Works on continuous environments

so far
Non-existence of PAC

algorithm for near-optimal

[1] A Framework for Transforming Specifications in Reinforcement Learning. Rajeev Alur, Suguman Bansal, Osbert Bastani,

Kishor Jothimurugan. ArXiv 2021
[2] Compositional Reinforcement Learning from Logical Specifications. Kishor Jothimurugan, Suguman Bansal, Osbert

Bastani and Rajeev Alur. NeurIPS 2021



SOTA in Practical Algorithms

Environment: Continuous domain is R?, Initial state in S,
Task: Visit 57 or S,, then visit S5. Always avoid 0.

Poor Scalability
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SOTA in Practical Algorithms

Environment: Continuous domain is R?, Initial state in S,
Task: Visit 57 or S,, then visit S5. Always avoid 0.
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Contributions

Leverage structure of logical specification to scale to long horizon
tasks?

Improved Scalability

Novel compositional algorithm
DiRL =
High-level planning on specification
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Markov Decision Process (MDP)

Environmentisan MDP M = (S, A, P,n)

e Sisthe set of states

e Aisthe set of actions

e P:S X A x §—0,1]is the transition probability
* P(s,a,s")isthe probability of transitioning to s’ from s on action a

* n: S —[0,1] is the initial state distribution
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SpectRL

[Jothimurugan, Bastani, Alur; NeurlPS 2019]

Logical specification language
* Temporal logic over predicates on the environment states
* Predicates map environment states to {True, False}

Syntax: @ :=-eventuallyb | ¢ ensuringb | ¢ ;@ | ¢ or @

Example: “Visit §; or S, while avoiding O”
((eventually Visit S;) or (eventually Visit S,)) ensuring (Avoid O)

where, predicate Visit X is true in env. state s iff s € X
predicate Avoid X is trueinenv. state s iff s € X
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RL from Specifications

Given,
Environment M (MDP) with unknown transition probability
SpectRL specification ¢

Generate,
Policy P: (S X A)* X S -> D(A) s.t.
Probability that policy P satisfies ¢ is maximized in M
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Challenge: Myopia in RL

RL is good at short-horizon tasks but poor at long-

horizon tasks
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Challenge: Myopia in RL

RL is good at short-horizon tasks but poor at long-horizon tasks
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DiRL = High-level planning + Low-level RL

[ Decompose specification to subtasks }

!

Learn policies for subtask

Use off-the-shelf RL
" y

\ 4

[ Plan/Compose to compute best policy ]




Decompose

SpectRL specifications are transformed to a DAG-like structure called
abstract graph

Each vertex represents a set
of states

Visit (S; or S,) then Visit S5

- (%)
while avoiding O
Each edge represents a Final vertex
subtask
18




Satisfaction w.r.t. DAG-like structure

( =@ifandonlyif{ F G,
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Learn + Plan

Search for path policies to maximize probability to reach final vertex in

abstract graph
From §;, Visit S5

while avoiding O

Path policy for Sy = S, — S5
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Learn + Plan: Order of learning edges

Inefficient to learn S1-> S3 first. Explore states in topological order

From §;, Visit S5
while avoiding O

Our algorithm interleaves Dijkstra-style planning (searching for a path)
and learning policies for edges in abstract graph

21



Learn + Plan

Obtain policies along path with max. probability to reach final state in DAG

 Learn policies for all edges (subtasks) in DAG
* Probability of edge = Estimated probability of subtask satisfaction by policy
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Learn + Plan

Obtain policies along path with max. probability to reach final state in DAG

 Learn policies for all edges (subtasks) in DAG
* Probability of edge = Estimated probability of subtask satisfaction by policy

* Plan best path to final state
* Final policy composes policies of edges on the best path
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DiRL = High-level planning + Low-level RL

Decompose specification to subtasks
Leverage DAG structure of abstract graph

!

Learn policies for subtask

Use off-the-shelf RL
" y

Plan/Compose to compute best policy
Use Dijkstra-style algorithm




Empirical evaluation: Benchmark families

Environments with continuous states and continuous actions

OpenAl Gym
Fetch-Pick-And-Place Environment

Rooms Environment




Rooms Environment
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Rooms Environment

Probability
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Rooms Environment

Probability
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Rooms Environment
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Rooms Environment
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Fetch Environment
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Compositional RL from Logical Specifications
@NeurlPS 2021

* Specifications are good at describing long-horizon tasks
 RLis good at learning short-horizon tasks

* DiRL = High-level planning + Low-level RL
* Compositional algorithm
* Scales to long-horizon tasks on continuous environments

* RL from specifications in adversarial games, multi-agent systems, etc
 Compositional verification



Compositional RL from Logical Specifications
@NeurlPS 2021

DiRL = High-level planning + Low-level RL DiRL is open-source!
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|. Leverages structure of specification

II. Compositional algorithm

Ill. Improves scalability significantly
on continuous control tasks



