
Compositional
Reinforcement Learning from

Logical Specifications

Suguman BansalKishor Jothimurugan

Osbert Bastani Rajeev Alur

NeurIPS 2021

Reinforcement Learning (RL)

2

Environment

System/
Agent

Generate a policy
for system/agent

RL Algorithm

• Policy refinement loop

• Policy updated after
sampling the
environment

3

System/Agent

Current policy 𝜋𝑡

Unknown
Environment

RL Algorithm

• Policy refinement loop

• Policy updated after
sampling the
environment

4

System/Agent

Current policy 𝜋𝑡

Unknown
Environment

State
𝑠𝑡

Action
𝑎𝑡

RL Algorithm

• Policy refinement loop

• Policy updated after
sampling the
environment

• Generate policy that
optimizes total reward

5

System/Agent

Current policy 𝜋𝑡

Unknown
Environment

State
𝑠𝑡+1

Action
𝑎𝑡

Reward
𝑟𝑡

Rewards encode desired task

Hard to encode task with rewards

6

Environment: Continuous domain is ℝ2, Initially in 𝑆0

Task: Visit 𝑆1 or 𝑆2, then visit 𝑆3. Always avoid 𝑂.

count = 0 # global variable

def get_rewards(s):
if state.at(O) :

return -10
if count == 0 and state.at(𝑆1) :

count = 1
if count == 0 and state.at(𝑆2) :

count = 1
if count == 1 and state.at(𝑆3) :

count = 0
return 1

return 0

Hard to encode task with rewards

7

Environment: Continuous domain is ℝ2, Initially in 𝑆0

Task: Visit 𝑆1 or 𝑆2, then visit 𝑆3. Always avoid 𝑂.

count = 0 # global variable

def get_rewards(s):
if state.at(O) :

return -10
if count == 0 and state.at(𝑆1) :

count = 1
if count == 0 and state.at(𝑆2) :

count = 1
if count == 1 and state.at(𝑆3) :

count = 0
return 1

return 0

Logical specifications
to encode tasks?

RL from Logical Specification
Learns policy that optimizes (probability of) satisfaction of
specification

[1] A Framework for Transforming Specifications in Reinforcement Learning. Rajeev Alur, Suguman Bansal, Osbert Bastani,

Kishor Jothimurugan. ArXiv 2021

[2] Compositional Reinforcement Learning from Logical Specifications. Kishor Jothimurugan, Suguman Bansal, Osbert

Bastani and Rajeev Alur. NeurIPS 2021

Weak Theoretical Guarantees

• No algorithm for optimal policy
so far

• Non-existence of PAC
algorithm for near-optimal

Practical Algorithms

• Compositional RL from logical
specifications

• Works on continuous environments

SOTA in Practical Algorithms

Environment: Continuous domain is ℝ2, Initial state in 𝑆0
Task: Visit 𝑆1 or 𝑆2, then visit 𝑆3. Always avoid 𝑂.

9
Number of samples

P
ro

b
ab

ili
ty

Poor Scalability

SOTA in Practical Algorithms

Environment: Continuous domain is ℝ2, Initial state in 𝑆0
Task: Visit 𝑆1 or 𝑆2, then visit 𝑆3. Always avoid 𝑂.

10
Number of samples

P
ro

b
ab

ili
ty

Poor Scalability

DiRL (Ours)

Contributions

Leverage structure of logical specification to scale to long horizon
tasks?

Novel compositional algorithm

DiRL =

High-level planning on specification

+

Low-level RL on environment

11

Number of samples

P
ro

b
ab

ili
ty

Improved Scalability

Markov Decision Process (MDP)

Environment is an MDP 𝑀 = 𝑆, 𝐴, 𝑃, 𝜂

• 𝑆 is the set of states

• 𝐴 is the set of actions

• 𝑃 ∶ 𝑆 × 𝐴 × 𝑆 → [0,1] is the transition probability
• 𝑃(𝑠, 𝑎, 𝑠′) is the probability of transitioning to 𝑠′ from 𝑠 on action 𝑎

• 𝜂 ∶ 𝑆 → 0,1 is the initial state distribution

12

SpectRL
[Jothimurugan, Bastani, Alur; NeurIPS 2019]

Logical specification language
• Temporal logic over predicates on the environment states
• Predicates map environment states to {True, False}

Syntax: 𝜑 ∶= eventually b | 𝜑 ensuring b | 𝜑 ; 𝜑 | 𝜑 or 𝜑

Example: “Visit 𝑆1 or 𝑆2 while avoiding 𝑂”
((eventually Visit 𝑆1) or (eventually Visit 𝑆2)) ensuring (Avoid 𝑂)

where, predicate Visit 𝑋 is true in env. state 𝑠 iff 𝑠 ∈ 𝑋
predicate Avoid 𝑋 is true in env. state 𝑠 iff 𝑠 ∉ 𝑋

13

RL from Specifications

Given,
Environment M (MDP) with unknown transition probability
SpectRL specification 𝝋

Generate,
Policy P : (S × A)* × S -> D(A) s.t.
Probability that policy P satisfies 𝝋 is maximized in M

14

Challenge: Myopia in RL

RL is good at short-horizon tasks but poor at long-horizon tasks

15

P
ro

b
ab

ili
ty

Number of samples

Visit (𝑆1 or 𝑆2)
while avoiding 𝑂

Learns to visit 𝑆2 via obstacle-free path

Challenge: Myopia in RL

RL is good at short-horizon tasks but poor at long-horizon tasks

16

Visit (𝑆1 or 𝑆2) then Visit 𝑆3
while avoiding 𝑂

Futile to learn to visit 𝑆2
Better to learn to visit 𝑆1

P
ro

b
ab

ili
ty

Number of samples

DiRL = High-level planning + Low-level RL

17

Decompose specification to subtasks

Learn policies for subtask
Use off-the-shelf RL

Plan/Compose to compute best policy

Decompose

SpectRL specifications are transformed to a DAG-like structure called
abstract graph

18

Visit (𝑆1 or 𝑆2) then Visit 𝑆3
while avoiding 𝑂

Each vertex represents a set
of states

Each edge represents a
subtask

Final vertex

Satisfaction w.r.t. DAG-like structure

19

𝜁 = ……

𝜁 = 𝑠0 𝑠𝑖2 𝑠𝑖3 ……

∈ 𝑍∉𝑂 ∈ 𝑍∉𝑂𝜻 ⊨ 𝝋 𝐢𝐟 𝐚𝐧𝐝 𝐨𝐧𝐥𝐲 𝐢𝐟 𝜻 ⊨ 𝑮𝝋

Learn + Plan

Search for path policies to maximize probability to reach final vertex in
abstract graph

20

𝜋1
𝜋2

Path policy for 𝑆0 → 𝑆2 → 𝑆3:

Execute 𝜋1 until 𝑆2 reached;
Execute 𝜋2 until 𝑆3 reached

From 𝑆1, Visit 𝑆3
while avoiding 𝑂

Learn + Plan: Order of learning edges

Inefficient to learn S1-> S3 first. Explore states in topological order

21

𝜋1
𝜋2

Our algorithm interleaves Dijkstra-style planning (searching for a path)
and learning policies for edges in abstract graph

From 𝑆1, Visit 𝑆3
while avoiding 𝑂

Learn + Plan

Obtain policies along path with max. probability to reach final state in DAG

• Learn policies for all edges (subtasks) in DAG
• Probability of edge = Estimated probability of subtask satisfaction by policy

22

?

? ?

?

Learn + Plan

Obtain policies along path with max. probability to reach final state in DAG

• Learn policies for all edges (subtasks) in DAG
• Probability of edge = Estimated probability of subtask satisfaction by policy

23

? ?

?0.8

Learn + Plan

Obtain policies along path with max. probability to reach final state in DAG

• Learn policies for all edges (subtasks) in DAG
• Probability of edge = Estimated probability of subtask satisfaction by policy

24

0.95 ?

?0.8

Learn + Plan

Obtain policies along path with max. probability to reach final state in DAG

• Learn policies for all edges (subtasks) in DAG
• Probability of edge = Estimated probability of subtask satisfaction by policy

25

0.95 ?

0.950.8

Learn + Plan

Obtain policies along path with max. probability to reach final state in DAG

• Learn policies for all edges (subtasks) in DAG
• Probability of edge = Estimated probability of subtask satisfaction by policy

26

0.95 0

0.950.8

Learn + Plan

Obtain policies along path with max. probability to reach final state in DAG

• Learn policies for all edges (subtasks) in DAG
• Probability of edge = Estimated probability of subtask satisfaction by policy

27

0.95 0

0.950.8

Learn + Plan

Obtain policies along path with max. probability to reach final state in DAG

• Learn policies for all edges (subtasks) in DAG
• Probability of edge = Estimated probability of subtask satisfaction by policy

• Plan best path to final state
• Final policy composes policies of edges on the best path

28

0.95 0

0.950.8

DiRL = High-level planning + Low-level RL

29

Decompose specification to subtasks
Leverage DAG structure of abstract graph

Learn policies for subtask
Use off-the-shelf RL

Plan/Compose to compute best policy
Use Dijkstra-style algorithm

Empirical evaluation: Benchmark families

Rooms Environment OpenAI Gym

Fetch-Pick-And-Place Environment

Environments with continuous states and continuous actions

31

Number of samples
P

ro
b

ab
ili

ty

Rooms Environment

32

Number of samples
P

ro
b

ab
ili

ty

Rooms Environment

33

Number of samples
P

ro
b

ab
ili

ty

Rooms Environment

34

Number of samples
P

ro
b

ab
ili

ty

Rooms Environment

35

Number of samples
P

ro
b

ab
ili

ty

Rooms Environment

36

Fetch Environment

Compositional RL from Logical Specifications
@NeurIPS 2021

37

• Specifications are good at describing long-horizon tasks
• RL is good at learning short-horizon tasks

• DiRL = High-level planning + Low-level RL
• Compositional algorithm

• Scales to long-horizon tasks on continuous environments

• RL from specifications in adversarial games, multi-agent systems, etc

• Compositional verification

Compositional RL from Logical Specifications
@NeurIPS 2021

DiRL = High-level planning + Low-level RL

I. Leverages structure of specification

II. Compositional algorithm

III. Improves scalability significantly

on continuous control tasks

38

DiRL is open-source!

