

Comparator automata for quantitative verification*

ΒY

Suguman Bansal

Swarat Chaudhuri

Moshe Y. Vardi

LAV Seminar, UC Berkeley

*Appeared at FoSSaCS 2018 at ETAPS 2018

Comparison is ubiquitous in verification

- Verification is whether a model satisfies a specification
- Weight of word
 - 1, if word present in model or specification
 - 0, otherwise
- Verification
 - Weight of every word in model is less than or equal to its weight in specification

Quantitative (quant.) properties

- Real-valued weight of runs
 - Resource consumption of a system
 - Reward received in a strategy
- Quant. verification reasons about quant. properties
 - Does the model consume fewer resource than the specification?
 - Which strategy results in greater reward?

Aggregate function

- Aggregate function $f : \mathbb{N}^{\{\omega\}} \to \mathbb{R}$
- Commonly used aggregate functions
 - Limit supremum (Limsup)
 - Discounted-sum
 - Limit-average

Aggregate function

- Aggregate function $f : \mathbb{N}^{\{\omega\}} \to \mathbb{R}$
- Commonly used aggregate functions
 - Limit supremum (Limsup)
 - Discounted-sum
 - Limit-average
- Weight of run
 - Aggregate of its weight sequence
- Weight of word
 - Infimum/Supremum of weight of its runs

Comparison problem

- Quantitative verification deals with comparison of aggregates of weight sequences
- Given,
 - Infinite weight sequences A, B
 - Aggregate function $f : \mathbb{N}^{\{\omega\}} \to \mathbb{R}$
- Comparison problem
 - $\operatorname{ls} f(A) \leq f(B)$?

Comparison problem

- Drawbacks
 - Comparison dealt *ad hoc*
 - Different algorithm for same problem on different aggregate functions

Comparison problem

- Drawbacks
 - Comparison dealt *ad hoc*
 - Different algorithm for same problem on different aggregate functions
- Core contribution
 - Novel technique for comparison
 - Yields generic algorithms for a large class of aggregate functions
 - Obtains tighter complexity theoretic bounds

Comparator automata (Comparator)

- Comparator for aggregate function $f: \mathbb{N}^{\{\omega\}} \to \mathbb{R}$ is an automaton
 - Alphabet of comparator is $\{0, 1, \dots, \mu\} \times \{0, 1, \dots, \mu\}$
 - Accepts pair of bounded number sequences (A, B) iff $f(A) \leq f(B)$

Comparator automata (Comparator)

- Comparator for aggregate function $f: \mathbb{N}^{\{\omega\}} \to \mathbb{R}$ is an automaton
 - Alphabet of comparator is $\{0, 1, \dots, \mu\} \times \{0, 1, \dots, \mu\}$
 - Accepts pair of bounded number sequences (A, B) iff $f(A) \le f(B)$

• Büchi comparator

• When comparator for an aggregate function is a Büchi automata

Supremum function

- Supremum (*Sup*) of a number-sequence is the largest value in the sequence
 - $A = 1, 5, 3, 1^{\{\omega\}}, Sup(A) = 5$

Supremum function

- Supremum (*Sup*) of a number-sequence is the largest value in the sequence
 - $A = 1, 5, 3, 1^{\{\omega\}}, Sup(A) = 5$
- Supremum comparator is a Büchi comparator
 - States are (*n*, *m*)
 - Each records maximum value appearing on the sequence so far
 - Initial state (0,0)
 - Accepting state if $n \leq m$

Discounted-sum (DS) function

- Discounted-sum of number sequence R with discount factor d>1 is $DS_d(R)=r_0+\frac{r_1}{d}+\frac{r_2}{d^2}\ldots$
- DS has applications in
 - Decaying rewards of agents in multi-agent systems [Abreu; ECONOMETRICA 1988]
 - Quantitative safety [Cerny, Henzinger, Radhakrishna; POPL 2013]

Discounted-sum (DS) function

- Discounted-sum of number sequence R with discount factor d > 1 is $DS_d(R) = r_0 + \frac{r_1}{d} + \frac{r_2}{d^2}$...
- DS has applications in
 - Decaying rewards of agents in multi-agent systems [Abreu; ECONOMETRICA 1988]
 - Quantitative safety [Cerny, Henzinger, Radhakrishna; POPL 2013]
- DS-comparator with discount-factor d > 1
 - Pair of weight sequences (A, B) is accepted by DS-comparator with discount-factor d iff $DS_d(A) \le DS_d(B)$

Discounted-sum (DS) function

- Discounted-sum of number sequence R with discount factor d > 1 is $DS_d(R) = r_0 + \frac{r_1}{d} + \frac{r_2}{d^2}$...
- DS has applications in
 - Decaying rewards of agents in multi-agent systems [Abreu; ECONOMETRICA 1988]
 - Quantitative safety [Cerny, Henzinger, Radhakrishna; POPL 2013]
- DS-comparator with discount-factor d > 1
 - Pair of weight sequences (A, B) is accepted by DS-comparator with discount factor d iff $DS_d(A) \le DS_d(B)$

Theorem: DS-comparator is Büchi when discount factor is an integer

DS-Comparator : Core Insight – I

• Sequence $A = (a_0, a_1, a_2 \dots)$, integer discount factor d > 1

•
$$DS_d(A) = a_0 + \frac{a_1}{d} + \frac{a_2}{d^2} + \cdots$$

= $(a_0, a_1 a_2, \dots)_d = A_d$ [Chaudhuri, Sankaranarayanan, Vardi, LICS 2013]

DS-Comparator : Core Insight – II

• Sequence $A = (a_0, a_1, a_2 \dots)$, integer discount factor d > 1

•
$$DS_d(A) = a_0 + \frac{a_1}{d} + \frac{a_2}{d^2} + \cdots$$

= $(a_0, a_1 a_2, \dots)_d = A_d$

- $DS_d(A) \leq DS_d(B)$ iff $A_d \leq B_d$
- So, there is a $C = (c_0, c_1, c_2, ...)$ such that • $DS_d(C) = C_d \ge$

•
$$A_d + C_d = B_d$$

Arithmetic in base
$$d$$

$$i > 0$$
, $a_i + c_i + x_i = b_i + d \cdot x_{\{i-1\}}$

$$i > 0$$
, $a_i + c_i + x_i = b_i + d \cdot x_{\{i-1\}}$

• Consider (d = 10)

i > 0, $a_i + c_i + x_i = b_i + d \cdot x_{\{i-1\}}$

 $= DS_d(A) + DS_d(C) = DS_d(B)$

DS-Comparator : Construction

Automaton accepts (A, B) iff $DS_d(A) \le DS_d(B)$

Quantitative inclusion [Chatterjee, Doyen, Henzinger; CSL 2008]

- Quantitative finite-state machines
 - Weight of run
 - Aggregate of its weight sequence
 - Aggregate function $f : \mathbb{N}^{\{\omega\}} \to \mathbb{R}$
 - Weight of word
 - Infimum/Supremum of weight of its runs
- Quantitative inclusion for aggregate function f between P and Q ($P \subseteq_f Q$)
 - Weight of every word in *P* is less than or equal to its weight in *Q*
 - Applied in quantitative model checking

Quantitative finite-state machine

Quantitative inclusion [Chatterjee, Doyen, Henzinger; CSL 2008]

- Ad-hoc nature of quantitative inclusion
 - Supremum or limit-supremum [Chatterjee et al. CSL 2008]
 - Discounted-sum [Boker, Henzinger; LICS 2015] [Chatterjee et. al. CSL 2008]

Quantitative finite-state machine

Quantitative inclusion [Chatterjee, Doyen, Henzinger; CSL 2008]

- Ad-hoc nature of quantitative inclusion
 - Supremum or limit-supremum [Chatterjee et al. CSL 2008]
 - Discounted-sum [Boker, Henzinger; LICS 2015] [Chatterjee et. al. CSL 2008]
- Comparator-based generic algorithm
 - Applies when comparator is Büchi

Quantitative finite-state machine

Generic solution for $P \subseteq_f Q$

- Reduced to language equivalence between Büchi automata
- Reduction is polynomial in size of *P*, *Q* and comparator *C*

Theorem: PSPACE in size of *P*, *Q*, *C*

DS-inclusion

- Quantitative inclusion with discounted sum aggregate function
- When discount factor is integer
 - EXPTIME upper bound [Boker, Henzinger; LICS 2015] [Chatterjee et. al. CSL 2008]
 - PSPACE lower bound via reduction from language inclusion

Gap

DS-inclusion

- Quantitative inclusion with discounted sum aggregate function
- When discount factor is integer
 - EXPTIME upper bound [Boker, Henzinger; LICS 2015] [Chatterjee et. al. CSL 2008]
 - PSPACE lower bound via reduction from language inclusion
- DS-comparator has $O(\mu^2/d)$ states
 - μ is maximum weight in P and Q
 - *d* is integer discount-factor

Theorem: DS-inclusion with integer discount factor is PSPACE-complete

Gap

Büchi comparator as a Parity objective

- 2-player game
 - Each player receives a reward in each round
 - Objective of player: To receive greater reward that the other player
- Winning objective can be defined using a Büchi comparator
 - Parity objective
- Use algorithms for Parity objective to solve game
 - Solve for games with incomplete-information with Parity objective [Kupferman and Vardi; Advances in Temporal Logic 2000]

Comparators, in a nutshell

- Comparator automata for the comparison problem
 - Generic algorithms for quantitative verification
 - Uses properties of Büchi automata
 - Comparator-based algorithms have tight complexity bounds
 - Better than ad-hoc algorithms in some cases

Comparators, in a nutshell

- Comparator automata for the comparison problem
 - Generic algorithms for quantitative verification
 - Uses properties of Büchi automata
 - Comparator-based algorithms have tight complexity bounds
 - Better than ad-hoc algorithms in some cases
- Symbolic quantitative reasoning?
 - *In practice* performance of comparator-based algorithms vs. traditional algorithms
- Applications of non-Büchi comparators
 - Büchi pushdown comparators