Hybrid Compositional Reasoning for
Reactive Synthesis
from Finite-Horizon Specifications

Suguman Bansal Yong Li
Rice University Chinese Academy of Science
Lucas M. Tabajara Moshe Y. Vardi

Rice University Rice University

Reactive systems

Receive inputs

Emits outputs

Continuous cycle of interaction

Reactive systems

Receive inputs

Emits outputs

Continuous cycle of interaction

Reactive systems

Receive inputs
4

Physical
Environment

Emits outputs

Continuous cycle of interaction

“Reactive” systems today

Robot and human interactions Autonomous vehicles

AW
5 5

AA

~ UBER'S SELE-DRIVING CAR SAW
THE WOMAN IT RILLED,
REPORT SAYS

...The problem is that it’s hard to find images of every
SN T sort of situation that could happen in the wild. Can the
‘ T Boston Dynamics system distinguish a tumbleweed from a toddler. ...

“Reactive” systems today

Robot and human interactions Autonomous vehicles

AW
5 5

AAA

-~ UBER'S SELEDRIVING CAR SAW
THE WOMAN IT RILLED,
REPORT SAYS

...The problem is that it’s hard to find images of every
SN T sort of situation that could happen in the wild. Can the
: ~ » Boston Dynamics system distinguish a tumbleweed from a toddler. ...

Designing correct reactive systems is hard

6

Specifying intent of a reactive program is easier

Specifying intent of a reactive program is easier

Can we automatically generate a
reactive program from Its
specification?

Specifying intent of a reactive program is easier

Can we automatically generate a
reactive program from Its
specification?

Reactive synthesis

Specifying intent of a program is easier

Can we automatically generate a
reactive program from Its
specification written in LTLT ?

LTLf synthesis

2EXPTIM E-complete [De Giacomo and Vardi; IJCAI 2015]

Tools — Use LTL synthesis tools (Acacia+ [2012], BOSy [2016], StriX [2018])
First dedicated LTLf tool — Syft [2017]
Partitioned LTLf synthesis [2019]
FOND planning based (201s]

Contributions

Improving scalability of LTLf synthesis

Address the bottleneck
LTLf to DFA conversion

Algorithmic improvements go a long way

Open source tool Lisa

For LTLf to DFA conversion
For LTLf synthesis

11

Linear-temporal logic over finite horizon (LTLf)

[Baier and Mcllraith; 2006][De Giacomo and Vardi; IJCAI 2013]

e Specification language
 Temporal logic over discrete time

* Syntax
* Boolean variables and operators
 Temporal operators: Always, Eventually, Next, Until ...

Example: Always (Request = (Grant V Next Grant))
 “Every request is granted within the two steps”

12

Linear-temporal logic over finite horizon (LTLf)

[Baier and Mcllraith; 2006][De Giacomo and Vardi; IJCAI 2013]

e Specification language

 Temporal logic over discrete time

* Syntax

Example: Always (Request = (Grant V Next Grant))
“Every request is granted within the two steps”

* Boolean variables and operators
 Temporal operators: Always, Eventually, Next, ...

Request

T

F

T

F

T

T

Grant

T

F

F

T

F

T

H
A
LT

13

Linear-temporal logic over finite horizon (LTLf)

[Baier and Mcllraith; 2006][De Giacomo and Vardi; IJCAI 2013]

e Specification language

 Temporal logic over discrete time

* Syntax

Example: Always (Request = (Grant V Next Grant))
“Every request is granted within the two steps”

* Boolean variables and operators
 Temporal operators: Always, Eventually, Next, ...

Request

T

F

T

F

T

T

Grant

F

F

F

T

F

T

H
A
LT

14

LTLf synthesis

[De Giacomo and Vardi; 1JCAI 2015]

LTLf specification over input and output variables

Reactive system

* For each input, generates an output

* Each output depends on all prior inputs
* Input sequence |, output sequence O

Input (I) H
A
Output (O) T

LTLf synthesis: Given LTLf specification S,
Generate reactive system s.t. for all I, (1,0) satisfies S.

15

LTLf synthesis

[De Giacomo and Vardi; 1JCAI 2015]

LTLf specification over input and output variables

Reactive system

* For each input, generates an output

* Each output depends on all prior inputs
* Input sequence |, output sequence O

Input (I) T H
A
Output (O) T

LTLf synthesis: Given LTLf specification S,
Generate reactive system s.t. for all I, (1,0) satisfies S.

16

LTLf synthesis

[De Giacomo and Vardi; 1JCAI 2015]

LTLf specification over input and output variables

Reactive system

* For each input, generates an output

* Each output depends on all prior inputs
* Input sequence |, output sequence O

Input (I) T H
A
Output (O) F T

LTLf synthesis: Given LTLf specification S,
Generate reactive system s.t. for all I, (1,0) satisfies S.

17

LTLf synthesis

[De Giacomo and Vardi; 1JCAI 2015]

LTLf specification over input and output variables

Reactive system

* For each input, generates an output

* Each output depends on all prior inputs
* Input sequence |, output sequence O

Input (I) T T H
A
Output (O) F T

LTLf synthesis: Given LTLf specification S,
Generate reactive system s.t. for all I, (1,0) satisfies S.

18

LTLf synthesis

[De Giacomo and Vardi; 1JCAI 2015]

LTLf specification over input and output variables

Reactive system

* For each input, generates an output

* Each output depends on all prior inputs
* Input sequence |, output sequence O

Input (I) T T H
A
Output (O) F T T

LTLf synthesis: Given LTLf specification S,
Generate reactive system s.t. for all I, (1,0) satisfies S.

19

LTLf synthesis

[De Giacomo and Vardi; 1JCAI 2015]

LTLf specification over input and output variables

Reactive system

* For each input, generates an output

* Each output depends on all prior inputs
* Input sequence |, output sequence O

Input (I) T T F H
A
Output (O) F T T

LTLf synthesis: Given LTLf specification S,
Generate reactive system s.t. for all I, (1,0) satisfies S.

20

LTLf synthesis

[De Giacomo and Vardi; 1JCAI 2015]

LTLf specification over input and output variables

Reactive system

* For each input, generates an output

* Each output depends on all prior inputs
* Input sequence |, output sequence O

Input (I) T T F T H
A
Output (O) F T T F T

LTLf synthesis: Given LTLf specification S,
Generate reactive system s.t. for all I, (1,0) satisfies S.

21

LTLf synthesis = LTLf to DFA 4+

[De Giacomo and Vardi; [JCAI 2015]

— Grant A Always (Request =(Grant V Next Grant))
LTLf formula

—Request
S0 \
Grant
Request
Grant| Request A
A — Grant — Grant

*
—Grant

DFA 22

LTLf synthesis = LTLf to DFA 4 Reachability game

[De Giacomo and Vardi; [JCAI 2015]

— Grant A Always (Request =(Grant V Next Grant))

-
4{‘\ —Request ’
S0 :

Grant| Request
A — Grant

Grant

*
—Grant

DFA

LTLf formula

Request
N\
— Grant

Request

Grant

—Request /—Grant
— Request /— Grant

Request /Grant
Request /— Grant

* /Grant

Reactive system

23

LTLf synthesis = LTLf to DFA 4 Reachabilit

LTLf to DFA conversion

* Worst case, DFA is double exponential in size of formula

* Compositional techniques enhance scalability
 Decompose formula into sub-formulas
* Convert each sub-formula into DFA
* Compose DFAs

* Representation of state-space
* Explicit state space
e Symbolic state space: n-states use log(n) variables
* Impacts technique for composition

25

. Explicit-state compositional

All DFAs are represented explicitly

Composition with DFA minimization
* Intermediate DFA are minimal
* Final DFA is minimal

Minimization becomes expensive.
Does not scale.

S
s/\s
AN I

S g £ 5
| AT |
e (S) e

P
(f)

Tool — Mona
[Henriksen et al; TACAS 1995]

26

Il. Symbolic-state compositional

All DFAs are represented symbolically Minimal DFA = 4100 states
Symbolic minimal DFA = 13 vars

. , S Symbolic-state compositional
Composition without DFA minimization

* Intermediate DFAs are not minimal
* Final DFA not minimal

2 1 20 20
Large number of DFA state variables 3 2 10 20
4 2 1 2

Total - 31 42

27

Explicit state vs. Symbolic state

Runtime High
(Minimization)

DFA state space
(Small is good)

[Tabajara and Vardi; [JCAI 2019]

Very large
(42 vars)

28

Explicit state vs. Symbolic state

Runtime High
(Minimization)

DFA state space
(Small is good)

[Tabajara and Vardi; [JCAI 2019]

Very large
(42 vars)

29

Our approach for LTLf to DFA conversion

1. Greedy heuristic

2. Hybrid heuristic

30

Heuristic |: Greedy composition

Explicit-state composition
S

/\

S

AR

S S

| (/\
e)
P

(s)

a_m>m

W

e

Follows parse tree
Order of composition not optimal

31

Heuristic |: Greedy composition

Explicit-state composition
S

s/\s
i R i
S S (S)
| 2T I
e (S) e

P e

(s)

(,'

Follows parse tree
Order of composition not optimal

Greedy composition

P1

.

A\

Pr-1

Pk

32

Heuristic |: Greedy composition

Explicit-state composition
S

/\

S S
A IS
S S (s)
| 2T |
(& (¢

P ™

(S

W

)
)

()

Follows parse tree
Order of composition not optimal

Greedy composition

N\

P Dz Dk_]_ Dk
Make minimal DFA at leaf

33

Heuristic |: Greedy composition

Explicit-state composition

S
s/\s
i R i
S S (S)
| 2T I
e (S) e
P e
(s)

(,,

Follows parse tree
Order of composition not optimal

Greedy composition

N
Dl,mz Dl /\Dm Dk—l Dk

Make minimal DFA at leaf
Compose smallest two

34

Heuristic |: Greedy composition

Explicit-state composition

S
s/\s
i R i
S S (S)
| 2T l
e (8§) e
P e
(s)

(4:

Follows parse tree
Order of composition not optimal

Greedy composition

D — Dl/\Dz/\"’Dk

Make minimal DFA at leaf
Compose smallest two
Continue till one DFA remains

35

Our approach for LTLf to DFA conversion

v’ Greedy heuristic
“Smallest first”

2. Hybrid heuristic

36

euristic |l
vbrid composition

Use both state representations

* Initially, greedy composition

* Soon, intermediate DFA
become too large
* Minimization is not effective

* So, switch to symbolic-state
* Compact DFA representation

Cﬁ‘g

)
b MNES/ £y

¢ | I‘ \ : \,'i'_)
- | : ““ 1'%

u< “‘n SD b i l‘x‘ (’t))

y N .3 / e I\

$ LA (’3} ' L\ “*“ =)
o L.

+ ‘u
&N
/] A S \ (=)
()
4 . | A
[f T
N, =)

]
T Symbolic
Explicit
N AN

LTLf specification

Our approach for LTLf to DFA conversion

v’ Greedy heuristic
“Smallest first”

v’ Hybrid heuristic
“Explicit in the beginning, symbolic later on”

38

Our tool Lisa:
Implementation details

Lisa: https://github.com/vardigroup/lisa

Functions
1. LTLfto DFA conversion
2. LTLf synthesis

Modes
* Greedy (Explicit state only)
* Greedy + Hybrid

39

Empirical evaluation: Benchmark families
~ 450 benchmarks

Randomly generated
n conjunctions of basic formulas
[Zhu et al, [JCAI 2017]

Sequential counters

(n = #bits)
[Tabajara and Vardi, IJCAI 2019]
4)
Single Counter (n = #bits)
o|1|1|=>|1]0]|0 |-
\ J
/Double Counter (n = #bits)
ol1|o|=f0|1]|1]|--
o|o|1||0|1]0]|--

_

Nim games
n,m parameters
[Tabajara and Vardi, IJCAI 2019]

-

1 2
A takes 2 from 1

3 1 2 3
B takes 3 from 3

tak
=N -EE
1 2 3 1 2 3
B takes 1 from 2 A takes heap 1
— . B

J

B takes heap 2

1 2 3
A takes 1 from 2
B takes 1 from 2

A takes last coin

and wins

Empirical evaluation: |. DFA construction

Runtime

Lisa — Greedy + Hybrid
Faster
Solves more benchmarks

Not minimal, but small
state space

Timeout (in seconds)

4000

3500

3000

2500

2000 |

1500 |

1000 |

=== Mona

= |lisa — Greedy

Lisa — Greedy + Hybrid

50

100 150 200 250 300
Number of benchmarks solved (Total = 454)

350

400

Empirical evaluation:

10°

FOND planning
1. SynKit

104 b
LTLf to DFA + Game solving |
1. Part: Symbolic DFA £
2. Syft+: Mona :
3. LisaSynt: Lisa —Greedy + § |
Hybrid "
10‘5—
LisaSynt solves larger and
most benchmarks »

. LTLf synthesis

|

SynKit
Part
Syft+

UsaSynt:

10

15 20 25 30
Number of benchmarks solved (Total = 54)

35

40

45

In a nutshell

Hybrid Compositional Reasoning for Reactive Synthesis
from Finite-Horizon Specifications (Paper |d. 9333)

e LTLf to DFA conversion primary bottleneck in LTLf synthesis
e Algorithmic insights (heuristics) significantly improve DFA conversion

* Lisa Open source tool
* LTLf to DFA conversion, LTLf synthesis
* https://github.com/vardigroup/lisa

 Explore further algorithmic improvements/heuristics
 Symmetry, tunable parameters, ...

