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“Reactive” systems today

Robot and human interactions Autonomous vehicles
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Designing correct reactive systems is hard
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Specifying intent of a program is easier

Can we automatically generate a
reactive program from Its
specification written in LTLT ?

LTLf synthesis

2EXPTIM E-complete [De Giacomo and Vardi; IJCAI 2015]

Tools — Use LTL synthesis tools (Acacia+ [2012], BOSy [2016], StriX [2018])
First dedicated LTLf tool — Syft [2017]
Partitioned LTLf synthesis [2019]
FOND planning based (201s]



Contributions

Improving scalability of LTLf synthesis

Address the bottleneck
LTLf to DFA conversion

Algorithmic improvements go a long way

Open source tool Lisa

For LTLf to DFA conversion
For LTLf synthesis
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Linear-temporal logic over finite horizon (LTLf)

[Baier and Mcllraith; 2006][De Giacomo and Vardi; IJCAI 2013]

e Specification language
 Temporal logic over discrete time

* Syntax
* Boolean variables and operators
 Temporal operators: Always, Eventually, Next, Until ...

Example: Always (Request = (Grant V Next Grant))
 “Every request is granted within the two steps”
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LTLf synthesis

[De Giacomo and Vardi; 1JCAI 2015]

LTLf specification over input and output variables

Reactive system

* For each input, generates an output

* Each output depends on all prior inputs
* Input sequence |, output sequence O

Input (I) H
A
Output (O) T

LTLf synthesis: Given LTLf specification S,
Generate reactive system s.t. for all I, (1,0) satisfies S.
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LTLf synthesis = LTLf to DFA 4+

[De Giacomo and Vardi; [JCAI 2015]

— Grant A Always (Request =(Grant V Next Grant))
LTLf formula

—Request
S0 \
Grant
Request
Grant| Request A
A — Grant — Grant

*
—Grant

DFA 22



LTLf synthesis = LTLf to DFA 4 Reachability game

[De Giacomo and Vardi; [JCAI 2015]
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LTLf synthesis = LTLf to DFA 4 Reachabilit




LTLf to DFA conversion

* Worst case, DFA is double exponential in size of formula

* Compositional techniques enhance scalability
 Decompose formula into sub-formulas
* Convert each sub-formula into DFA
* Compose DFAs

* Representation of state-space
* Explicit state space
e Symbolic state space: n-states use log(n) variables
* Impacts technique for composition

25



. Explicit-state compositional

All DFAs are represented explicitly

Composition with DFA minimization
* Intermediate DFA are minimal
* Final DFA is minimal

Minimization becomes expensive.
Does not scale.
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Tool — Mona
[Henriksen et al; TACAS 1995]
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Il. Symbolic-state compositional

All DFAs are represented symbolically Minimal DFA = 4100 states
Symbolic minimal DFA = 13 vars

. , S Symbolic-state compositional
Composition without DFA minimization

* Intermediate DFAs are not minimal
* Final DFA not minimal

2 1 20 20
Large number of DFA state variables 3 2 10 20
4 2 1 2

Total - 31 42
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Explicit state vs. Symbolic state

Runtime High
(Minimization)

DFA state space
(Small is good)

[Tabajara and Vardi; [JCAI 2019]

Very large
(42 vars)
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Our approach for LTLf to DFA conversion

1. Greedy heuristic

2. Hybrid heuristic
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Heuristic |: Greedy composition

Explicit-state composition
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Heuristic |: Greedy composition

Explicit-state composition
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Heuristic |: Greedy composition

Explicit-state composition
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Heuristic |: Greedy composition

Explicit-state composition
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Make minimal DFA at leaf
Compose smallest two
Continue till one DFA remains
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Our approach for LTLf to DFA conversion

v’ Greedy heuristic
“Smallest first”

2. Hybrid heuristic
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euristic |l
vbrid composition

Use both state representations

* Initially, greedy composition

* Soon, intermediate DFA
become too large
* Minimization is not effective

* So, switch to symbolic-state
* Compact DFA representation
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Our approach for LTLf to DFA conversion

v’ Greedy heuristic
“Smallest first”

v’ Hybrid heuristic
“Explicit in the beginning, symbolic later on”
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Our tool Lisa:
Implementation details

Lisa: https://github.com/vardigroup/lisa

Functions
1. LTLfto DFA conversion
2. LTLf synthesis

Modes
* Greedy (Explicit state only)
* Greedy + Hybrid
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Empirical evaluation: Benchmark families
~ 450 benchmarks

Randomly generated
n conjunctions of basic formulas
[Zhu et al, [JCAI 2017]

Sequential counters

(n = #bits)
[Tabajara and Vardi, IJCAI 2019]
4 )
Single Counter (n = #bits)
o|1|1|=>|1]0]|0 |-
\ J
/Double Counter (n = #bits)
ol1|o|=f0|1]|1]|--
o|o|1||0|1]0]|--

\_

Nim games
n,m parameters
[Tabajara and Vardi, IJCAI 2019]

-

1 2
A takes 2 from 1

3 1 2 3
B takes 3 from 3

tak
=N -EE
1 2 3 1 2 3
B takes 1 from 2 A takes heap 1
— . B

J

B takes heap 2

1 2 3
A takes 1 from 2
B takes 1 from 2
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Empirical evaluation: |. DFA construction

Runtime

Lisa — Greedy + Hybrid
Faster
Solves more benchmarks

Not minimal, but small
state space

Timeout (in seconds)
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Empirical evaluation:

10°

FOND planning
1. SynKit

104 b
LTLf to DFA + Game solving |
1. Part: Symbolic DFA £
2. Syft+: Mona :
3. LisaSynt: Lisa —Greedy +  § |
Hybrid "
10‘5—
LisaSynt solves larger and
most benchmarks »

. LTLf synthesis

|

SynKit
Part
Syft+

UsaSynt:

10

15 20 25 30
Number of benchmarks solved (Total = 54)
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In a nutshell

Hybrid Compositional Reasoning for Reactive Synthesis
from Finite-Horizon Specifications (Paper |d. 9333)

e LTLf to DFA conversion primary bottleneck in LTLf synthesis
e Algorithmic insights (heuristics) significantly improve DFA conversion

* Lisa Open source tool
* LTLf to DFA conversion, LTLf synthesis
* https://github.com/vardigroup/lisa

 Explore further algorithmic improvements/heuristics
 Symmetry, tunable parameters, ...



