
Hybrid Compositional Reasoning for
Reactive Synthesis

from Finite-Horizon Specifications

Suguman Bansal

Rice University

Yong Li

Chinese Academy of Science

Lucas M. Tabajara

Rice University

Moshe Y. Vardi

Rice University

Reactive systems

2

Reactive
System

Physical
Environment

Receive inputs

Emits outputs

Continuous cycle of interaction

Reactive systems

3

Reactive
System

Physical
Environment

Receive inputs

Emits outputs

Continuous cycle of interaction

Reactive systems

4

Reactive
System

Physical
Environment

Receive inputs

Emits outputs

Continuous cycle of interaction

“Reactive” systems today

Robot and human interactions Autonomous vehicles

5

…The problem is that it’s hard to find images of every
sort of situation that could happen in the wild. Can the
system distinguish a tumbleweed from a toddler. …

“Reactive” systems today

Robot and human interactions Autonomous vehicles

6

…The problem is that it’s hard to find images of every
sort of situation that could happen in the wild. Can the
system distinguish a tumbleweed from a toddler. …

Designing correct reactive systems is hard

7

Specifying intent of a reactive program is easier

Can we automatically generate a

reactive program from its

specification?

8

Specifying intent of a reactive program is easier

Can we automatically generate a

reactive program from its

specification?

9

Reactive synthesis

Specifying intent of a reactive program is easier

Can we automatically generate a

reactive program from its

specification written in LTLf ?

10

LTLf synthesis
2EXPTIME-complete [De Giacomo and Vardi; IJCAI 2015]

Tools – Use LTL synthesis tools (Acacia+ [2012], BoSy [2016], Strix [2018])
First dedicated LTLf tool – Syft [2017]

Partitioned LTLf synthesis [2019]

FOND planning based [2018]

Specifying intent of a program is easier

Contributions

Improving scalability of LTLf synthesis

Address the bottleneck

LTLf to DFA conversion

Algorithmic improvements go a long way

Open source tool Lisa

For LTLf to DFA conversion

For LTLf synthesis

11

Linear-temporal logic over finite horizon (LTLf)
[Baier and McIlraith; 2006][De Giacomo and Vardi; IJCAI 2013]

• Specification language
• Temporal logic over discrete time

• Syntax
• Boolean variables and operators
• Temporal operators: Always, Eventually, Next, Until …

Example: Always (Request → (Grant ∨ Next Grant))
• “Every request is granted within the two steps”

12

Linear-temporal logic over finite horizon (LTLf)
[Baier and McIlraith; 2006][De Giacomo and Vardi; IJCAI 2013]

• Specification language
• Temporal logic over discrete time

• Syntax
• Boolean variables and operators
• Temporal operators: Always, Eventually, Next, …

Example: Always (Request → (Grant ∨ Next Grant))
• “Every request is granted within the two steps”

13

Request T F T F T T H
A
LTGrant T F F T F T

Linear-temporal logic over finite horizon (LTLf)
[Baier and McIlraith; 2006][De Giacomo and Vardi; IJCAI 2013]

• Specification language
• Temporal logic over discrete time

• Syntax
• Boolean variables and operators
• Temporal operators: Always, Eventually, Next, …

Example: Always (Request → (Grant ∨ Next Grant))
• “Every request is granted within the two steps”

14

Request T F T F T T H
A
LTGrant F F F T F T

LTLf synthesis
[De Giacomo and Vardi; IJCAI 2015]

LTLf specification over input and output variables

Reactive system
• For each input, generates an output
• Each output depends on all prior inputs
• Input sequence I, output sequence O

LTLf synthesis: Given LTLf specification S,
Generate reactive system s.t. for all I, (I,O) satisfies S.

15

Input (I) H
A
LTOutput (O)

LTLf synthesis
[De Giacomo and Vardi; IJCAI 2015]

LTLf specification over input and output variables

Reactive system
• For each input, generates an output
• Each output depends on all prior inputs
• Input sequence I, output sequence O

LTLf synthesis: Given LTLf specification S,
Generate reactive system s.t. for all I, (I,O) satisfies S.

16

Input (I) T H
A
LTOutput (O)

LTLf synthesis
[De Giacomo and Vardi; IJCAI 2015]

LTLf specification over input and output variables

Reactive system
• For each input, generates an output
• Each output depends on all prior inputs
• Input sequence I, output sequence O

LTLf synthesis: Given LTLf specification S,
Generate reactive system s.t. for all I, (I,O) satisfies S.

17

Input (I) T H
A
LTOutput (O) F

LTLf synthesis
[De Giacomo and Vardi; IJCAI 2015]

LTLf specification over input and output variables

Reactive system
• For each input, generates an output
• Each output depends on all prior inputs
• Input sequence I, output sequence O

LTLf synthesis: Given LTLf specification S,
Generate reactive system s.t. for all I, (I,O) satisfies S.

18

Input (I) T T H
A
LTOutput (O) F

LTLf synthesis
[De Giacomo and Vardi; IJCAI 2015]

LTLf specification over input and output variables

Reactive system
• For each input, generates an output
• Each output depends on all prior inputs
• Input sequence I, output sequence O

LTLf synthesis: Given LTLf specification S,
Generate reactive system s.t. for all I, (I,O) satisfies S.

19

Input (I) T T H
A
LTOutput (O) F T

LTLf synthesis
[De Giacomo and Vardi; IJCAI 2015]

LTLf specification over input and output variables

Reactive system
• For each input, generates an output
• Each output depends on all prior inputs
• Input sequence I, output sequence O

LTLf synthesis: Given LTLf specification S,
Generate reactive system s.t. for all I, (I,O) satisfies S.

20

Input (I) T T F H
A
LTOutput (O) F T

LTLf synthesis
[De Giacomo and Vardi; IJCAI 2015]

LTLf specification over input and output variables

Reactive system
• For each input, generates an output
• Each output depends on all prior inputs
• Input sequence I, output sequence O

LTLf synthesis: Given LTLf specification S,
Generate reactive system s.t. for all I, (I,O) satisfies S.

21

Input (I) T T F … … T H
A
LTOutput (O) F T T … … F

LTLf synthesis
[De Giacomo and Vardi; IJCAI 2015]

¬ Grant ∧ Always (Request →(Grant ∨ Next Grant))

22

¬Request

¬Grant

Grant Grant

¬Request
∨

Grant

Request
∧

¬ Grant

LTLf to DFA= +

Request
∧ ¬ Grant

DFA

LTLf formula

LTLf synthesis
[De Giacomo and Vardi; IJCAI 2015]

¬ Grant ∧ Always (Request →(Grant ∨ Next Grant))

23

¬Request

¬Grant

Grant Grant

¬Request
∨

Grant

Request
∧

¬ Grant

LTLf to DFA Reachability game= +

Request
∧ ¬ Grant

Request /¬ Grant

¬ Request /¬ Grant

¬Request /¬Grant

Request /Grant

* /Grant

DFA

LTLf formula

Reactive system

LTLf synthesis
[De Giacomo and Vardi; IJCAI 2015]

¬ Grant ∧ Always (Request →(Grant ∨ Next Grant))

24

Request (I) T T F … … T H
A
LTGrant (O) F T T … … F

¬Request

¬Grant

Grant Grant

¬Request
∨

Grant

Request
∧

¬ Grant

LTLf to DFA Reachability game= +

* /¬ Grant

Request
∧ ¬ Grant

¬Request /¬Grant

Request /Grant

LTLf to DFA: Bottleneck

[Zhu et. al.; IJCAI 2017]

Reachability
LTLf to DFA

LTLf to DFA conversion

• Worst case, DFA is double exponential in size of formula

• Compositional techniques enhance scalability
• Decompose formula into sub-formulas

• Convert each sub-formula into DFA

• Compose DFAs

• Representation of state-space
• Explicit state space

• Symbolic state space: n-states use log(n) variables

• Impacts technique for composition

25

I. Explicit-state compositional

All DFAs are represented explicitly

Composition with DFA minimization

• Intermediate DFA are minimal

• Final DFA is minimal

Minimization becomes expensive.

Does not scale.

26

Tool – Mona
[Henriksen et al; TACAS 1995]

II. Symbolic-state compositional

All DFAs are represented symbolically

Composition without DFA minimization

• Intermediate DFAs are not minimal

• Final DFA not minimal

Large number of DFA state variables

27

States

state
vars.

subfor
mulas

Total #
state
vars

2 1 20 20

3 2 10 20

4 2 1 2

Total -- 31 42

Minimal DFA = 4100 states
Symbolic minimal DFA = 13 vars

Symbolic-state compositional

Explicit state vs. Symbolic state

28

Explicit Symbolic

Runtime High
(Minimization)

Low
(No minimization)

DFA state space
(Small is good)

[Tabajara and Vardi; IJCAI 2019]

Fewest
(4100 states, 13 vars)

Very large
(42 vars)

Explicit state vs. Symbolic state

29

Explicit Symbolic

Runtime High
(Minimization)

Low
(No minimization)

DFA state space
(Small is good)

[Tabajara and Vardi; IJCAI 2019]

Fewest
(4100 states, 13 vars)

Very large
(42 vars)

GOAL
Low Runtime + Smaller state space

Our approach for LTLf to DFA conversion

1. Greedy heuristic

2. Hybrid heuristic

30

Heuristic I: Greedy composition

Explicit-state composition

Follows parse tree

Order of composition not optimal
31

Heuristic I: Greedy composition

Explicit-state composition

Follows parse tree

Order of composition not optimal

Greedy composition

32

∧

…
𝜑1 𝜑2 𝜑𝑘−1 𝜑𝑘

Heuristic I: Greedy composition

Explicit-state composition

Follows parse tree

Order of composition not optimal

Greedy composition

Make minimal DFA at leaf

33

∧

…
𝐷1 𝐷2 𝐷𝑘−1 𝐷𝑘

Heuristic I: Greedy composition

Explicit-state composition

Follows parse tree

Order of composition not optimal

Greedy composition

Make minimal DFA at leaf

Compose smallest two

34

∧

…
𝐷1,𝑚=𝐷1 ∧ 𝐷𝑚 𝐷𝑘−1 𝐷𝑘

Heuristic I: Greedy composition

Explicit-state composition

Follows parse tree

Order of composition not optimal

Greedy composition

Make minimal DFA at leaf

Compose smallest two

Continue till one DFA remains

35

𝐷 = 𝐷1 ∧ 𝐷2 ∧ ⋯𝐷𝑘

Our approach for LTLf to DFA conversion

✓ Greedy heuristic

“Smallest first”

2. Hybrid heuristic

36

Heuristic II:
Hybrid composition

Use both state representations

• Initially, greedy composition

• Soon, intermediate DFA
become too large
• Minimization is not effective

• So, switch to symbolic-state
• Compact DFA representation

37

Our approach for LTLf to DFA conversion

✓ Greedy heuristic

“Smallest first”

✓ Hybrid heuristic

“Explicit in the beginning, symbolic later on”

38

Our tool Lisa:
Implementation details
Lisa: https://github.com/vardigroup/lisa

Functions

1. LTLf to DFA conversion

2. LTLf synthesis

Modes

• Greedy (Explicit state only)

• Greedy + Hybrid

• …

39

Empirical evaluation: Benchmark families
~ 450 benchmarks

Randomly generated

n conjunctions of basic formulas

[Zhu et al, IJCAI 2017]

…

Sequential counters

(n = #bits)

[Tabajara and Vardi, IJCAI 2019]

…

Double Counter (n = #bits)

…

Single Counter (n = #bits)

Nim games

n,m parameters

[Tabajara and Vardi, IJCAI 2019]

Empirical evaluation: I. DFA construction

41

Mona
Lisa – Greedy
Lisa – Greedy + Hybrid

Runtime

Lisa – Greedy + Hybrid

Faster

Solves more benchmarks

Not minimal, but small
state space

41

Mona
Lisa – Greedy
Lisa – Greedy + Hybrid

Empirical evaluation: II. LTLf synthesis

42
42

FOND planning

1. SynKit

LTLf to DFA + Game solving

1. Part: Symbolic DFA

2. Syft+: Mona

3. LisaSynt: Lisa –Greedy +
Hybrid

LisaSynt solves larger and
most benchmarks

In a nutshell
Hybrid Compositional Reasoning for Reactive Synthesis
from Finite-Horizon Specifications (Paper Id. 9333)

43

• LTLf to DFA conversion primary bottleneck in LTLf synthesis
• Algorithmic insights (heuristics) significantly improve DFA conversion

• Lisa Open source tool

• LTLf to DFA conversion, LTLf synthesis

• https://github.com/vardigroup/lisa

• Explore further algorithmic improvements/heuristics
• Symmetry, tunable parameters, …

