
Compositional Algorithm

Phase I: Construct Abstract Graph

An abstract graph is a DAG-like structure derived from the
given specification (automatically)

• Vertices are sets of states
• Edges are subtasks
• Edge labels denote constraints

Phase II: Plan and Learn

Run Dijkstra’s algorithm on the abstract graph

• Learn policy for an edge when Dijkstra’s algorithm
requires cost of edge

• Assign cost −𝒍𝒐𝒈(𝒑𝒆) for edge 𝑒 where 𝑝𝑒 is the
probability that subtask is completed successfully

• Initial state distribution chosen heuristically

Compositional Reinforcement Learning from Logical Specifications
Kishor Jothimurugan, Suguman Bansal, Osbert Bastani and Rajeev Alur

Paper

Logical Specifications
• Hard to write well-shaped reward functions

for complex tasks
• We instead use logical specifications

𝜙 = 𝐜𝐡𝐨𝐨𝐬𝐞 reach 𝑆1, reach 𝑆2 ; reach 𝑆3
𝐞𝐧𝐬𝐮𝐫𝐢𝐧𝐠 avoid 𝑂

Problem Statement
Given an MDP 𝑀 with unknown transition
probabilities and a specification 𝜙 we want
to compute a policy 𝜋∗ such that

𝜋∗ ∈ argmax
𝜋

Pr
𝜁∼𝐷𝜋

𝑀
[𝜁 ⊨ 𝜙]

Drawbacks of Existing Approaches
• Poor scalability w.r.t. complexity of

specification
• Not designed to solve tasks that require

high-level planning Code

Experiments
Task

Visit 𝑆1 or 𝑆2
then visit 𝑆3

Always avoid 𝑂

Contributions

1. Compositional algorithm that interleaves high-level
planning with low-level RL

2. Theoretical analysis showing that our algorithm’s
objective is a lower bound on satisfaction probability

3. Experimental evaluation on challenging benchmarks

Rooms Environment

Fetch Environment

