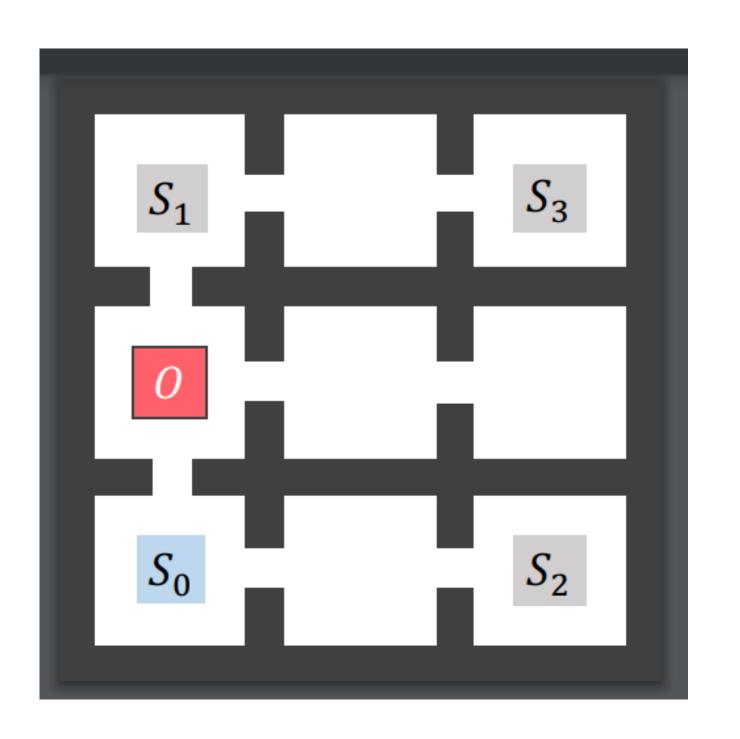
Compositional Reinforcement Learning from Logical Specifications Kishor Jothimurugan, Suguman Bansal, Osbert Bastani and Rajeev Alur



Task

Visit S_1 or S_2 then visit S_3 Always avoid *O*

Logical Specifications

- Hard to write well-shaped reward functions for complex tasks
 - We instead use logical specifications

$\phi = (choose (reach S_1, reach S_2); reach S_3)$ **ensuring** avoid *O*

Problem Statement

Given an MDP *M* with unknown transition probabilities and a specification ϕ we want to compute a policy π^* such that

$\pi^* \in \arg\max_{\pi} \Pr_{\zeta \sim D_{\pi}^{M}}[\zeta \vDash \phi]$

Drawbacks of Existing Approaches

- Poor scalability w.r.t. complexity of specification
- Not designed to solve tasks that require high-level planning

Contributions

1. Compositional algorithm that interleaves high-level planning with low-level RL 2. Theoretical analysis showing that our algorithm's objective is a lower bound on satisfaction probability **3.** *Experimental evaluation* on challenging benchmarks

Compositional Algorithm

Phase I: Construct Abstract Graph

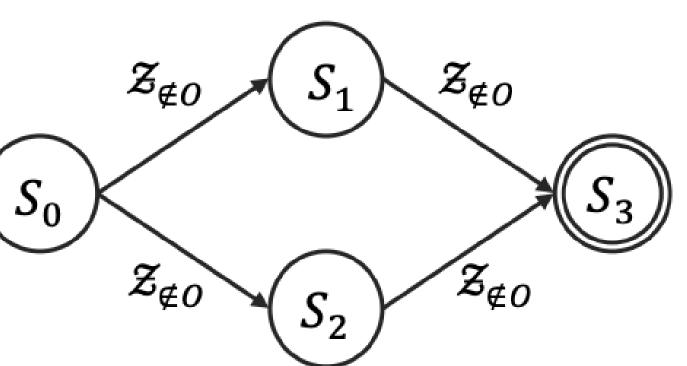
An *abstract graph* is a DAG-like structure derived from the given specification (automatically)

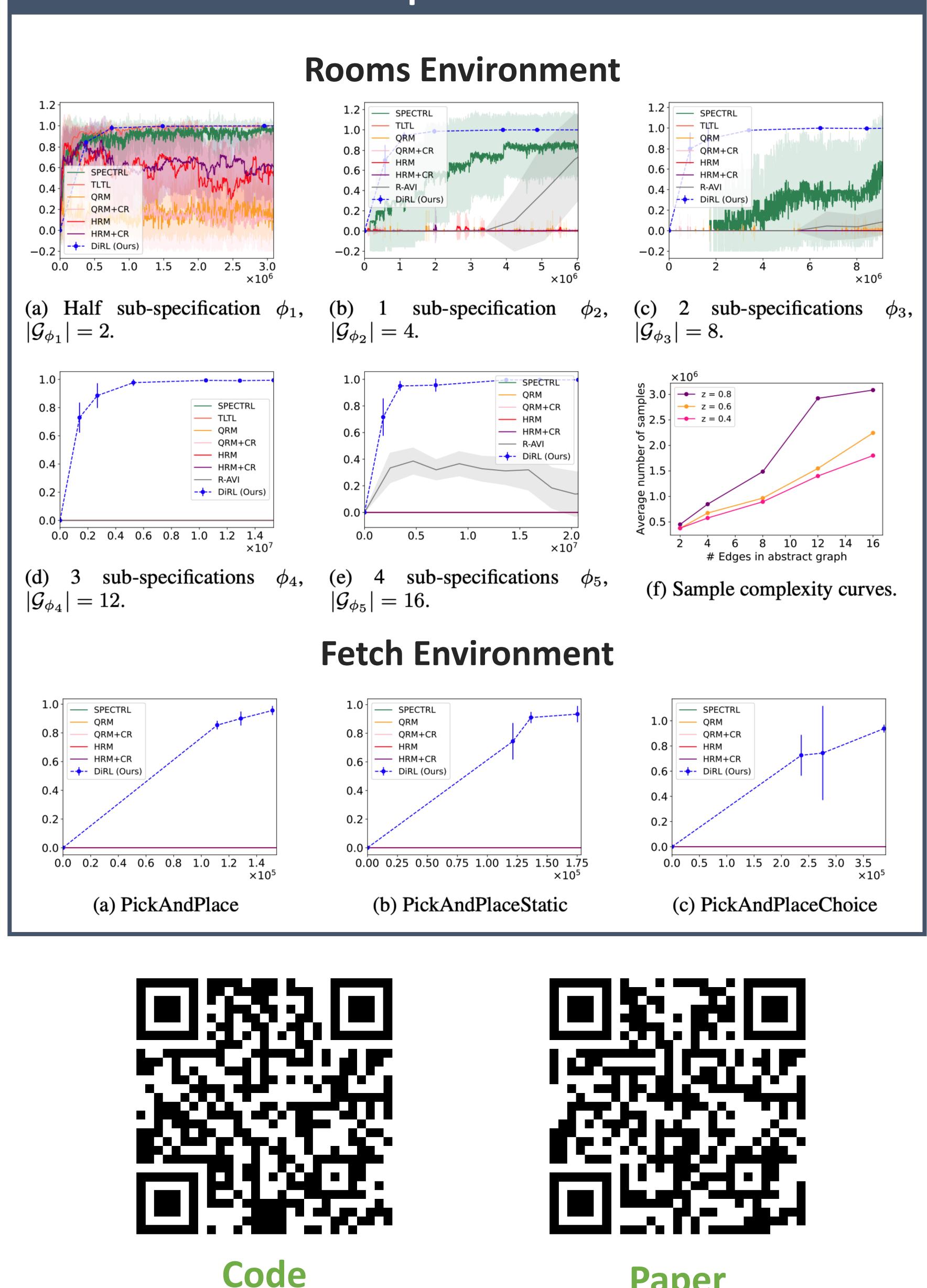
- Vertices are *sets of states*
- Edges are *subtasks*
- Edge labels denote *constraints*

Phase II: Plan and Learn

Run *Dijkstra's algorithm* on the abstract graph

- Learn *policy for an edge* when Dijkstra's algorithm requires cost of edge
- Assign cost $-log(p_e)$ for edge e where p_e is the probability that subtask is completed successfully Initial state distribution chosen heuristically





Experiments

Paper