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Abstract
We study equilibrium computation in weighted regular games, a
model of infinitely repeated, discounted, general-sum games where
the space of agent strategies is given by a finite automaton. Our
goal is to compute, for subsequent querying and analysis, the set
of all pure-strategy Nash equilibria in such a game. Our technical
contribution is an algorithm for computing an automaton represen-
tation of this set. We use our algorithm for checking properties of
rational behavior such as incentive compatibility in complex multi-
agent systems.

1. Introduction
Incentive compatibility, more commonly known as truthfulness
of agents, is crucial to the success of most multi-agent systems.
Incentive compatible systems are trusted to be fair to all agents
despite the presence of selfish agents (self-reward maximizing).
Consider auctions systems; agents (bidders) may be reluctant to
bid at their actual valuation of the item to avoid overbidding. By
bidding at a lower price, they act dishonestly. In an i-th price
auction, the highest bidder wins, and pays the price of the i-th
largest bid. Second-price auctions are incentive compatible, while
first-price auctions are not. For long, conventional wisdom held that
the Bitcoin protocol is incentive compatible. However, Eyal and
Sirer recently disproved this via rigorous mathematical analysis [1]
(See Section 2).

As demonstrated above, erroneous system design is common.
Therefore, analysis of incentive compatibility, more generally ra-
tional behavior, is critical. Such systems can be modeled as non-
zero sum games between selfish agents. From the PL perspective,
they can be treated as quantitative abstractions of systems of selfish
agents where quantitative utilities capture agent motives.

In this vein, we are interested in automating analysis of rational
behavior. More specifically, we introduce weighted regular games
to model such systems. We use techniques from formal methods to
emulate rigorous mathematical analysis of these program abstrac-
tions, and compute the set of all Nash equilibria, a rational behavior
solution concept in non-zero sum games.

2. Weighted Regular Games (WRG)
Non-zero sum games differ from zero-sum games, traditionally
seen in verification and synthesis of software systems, in two major
ways: (a). an agent need not always gain at the expense of another
agent, and (b). agents receive rational rewards, called utility. We
introduce WRGs as a model for non-zero sum games.

WRGs denote n-player games. Syntactically, WRGs form büchi
automaton over n-tuple alphabets, called action profile. Each tran-
sition is labeled by at least one n-tuple, called the weight tuple.
Each accepting word denotes a strategy profile in the game.

The i-th element of each action profile, weight profile and strat-
egy profile denotes the action of the i-th agent, the rational value

of utility attained by the i-th agent, and strategy of the i-th agent
respectively.

Utility of agents over accepting runs is computed as the dis-
counted sum of the agent’s utilities along transitions on that run.
The discounted sum of sequence A with discount factor d is given
by DS(A, d) = Σ∞

i=0ai/d
i.

A Nash equilibrium of a game is a strategy profile such that if
any agent unilaterally changes its strategy, then it will receive lower
aggregate utility. Since a strategy profile may have more that one
accepting run, there may be multiple utilities for its agents. In this
case, a strategy profile is in Nash equilibrium if it has at least one
accepting run that is in Nash equilibrium.

Note, a protocol is proven to be non-incentive compatible if it
has a Nash equilibria in which some agent plays dishonestly.

Illustrative example Consider a model for the Bitcoin protocol
(See Figure 1), a 3-player game between a dishonest miner P1,
an honest miner P2, and a scheduler P3. Each miner continuously
mines for a bitcoin (action s), and releases a bitcoin after it finds
one (action r). P2 immediately releases a bitcoin after finding one.
P1 may hoard (action h) a bitcoin after finding it to waste P2’s
resources. For simplicity, we assume that P1 can hoard a single
bitcoin at any time. A miner finds a bitcoin only after P3 rewards
it. Actions 0, 1, and 2 denote that none, P1, and P2 have been
rewarded respectively. Utilities along transitions are shown in Table
1.

3. Methodology
We have designed a provably correct algorithm to compute a büchi
automaton for all Nash equilibria in a given WRG with discount
factor d ∈ N. This algorithm is exponential in number of states in
the input WRG.

We first compute the set of all strategy profiles that are not in
Nash equilibrium, then complement it to obtain all Nash equilibria.
The exponential blow-up in comlexity arises from this step. Com-
putation of all non-Nash equilibria involves two major construc-
tions:

1. Construction of a comparator automaton that accepts a pair of
bounded rational number sequences (A,B) iff DS(A, d) >
DS(B, d) when d > 1, d ∈ N. For this, we use insights from
arithmetic over numbers in base d, and that discounted sum of
bounded sequences is bounded.

2. Construction of an automaton that accepts pair of strategy pro-
files (Π,Π′) iff they are unilaterally deviated from each other
for a single player Pi.

The idea is that if (Π,Π′) are unilaterally deviated for Pi, and
utility of Pi is greater on Π, then Π′ is not in Nash equilibrium.
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Figure 1: Bitcoin Protocol Game Model. xyz denotes action pro-
file (x, y, z). Weight Tuples defined as in Table 1.

From q1, q2, q3, and q5
Action r s, h, 0, 1, 2

Action Utility 1 0

From q4
Action Profile (h, r, ∗) (r, r, ∗)
Weight Tuple (0,1,0) (2,0,0) or (0,1,0)

Table 1: Utilities for agents in
Figure 1

Note: 1. P1 receives greater utility from q4
since it wastes P2’s resources.
2. Two weight tuples on (r, r, ∗) is due to
tie break.

4. Results
We implemented a prototype of our algorithm in Python using ex-
isting tools for Büchi operations (GOAL [2], RABIT-Reduce [3]).

We computed the set of all Nash equilibria in the Bitcoin Proto-
col. The resultant automaton contained 13 states and 57 transitions.
Clearly, this cannot be computed manually. From this automaton,
we concluded that the Bitcoin Protocol is not incentive compatible.
We made similar observations for various auction system. Addi-
tionally, we re-discovered, and made some new observations on the
Nash equilibria in the classical Iterated Prisoner Dilemma game.

5. Related Work
There is a large literature on non-zero sum infinite games with
discounted-sum payoffs as a standard model [4–6]. The seminal
work by Abreu, Pearce, and Stacchetti [7], and its followups [8],
are restricted to computing all or some equilibrium payoffs rather
than strategy profiles.

The problem of efficiently computing a single equilibrium strat-
egy in infinite games has been studied before [9–11]. There are also
a few approaches to computing representations of approximations
to the set of equilibria [12–14]. Except for work on finding one
equilibrium, most other approaches do not guarantee crisp com-
plexity bounds.
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