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Abstract

Prior compositional methods in LTLf to DFA conversion have
focused on improving the composition phase. In this work,
we examine improvements to the decomposition phase that
result in overall improvements in LTLf to DFA translation.
Our work is based on reducing the structure of the underlying
Abstract Syntax Tree (AST) of a formula such that the new
AST results in fewer composition operations.

Introduction
Linear Temporal Logic over Finite Traces (LTLf) is a spec-
ification language that expresses rich and complex tempo-
ral behaviors over a finite time horizon (De Giacomo and
Vardi 2013). LTLf finds broad-ranging applications, includ-
ing robotics navigation and manipulation, automated synthe-
sis (De Giacomo and Vardi 2015), model checking (Bansal
et al. 2023), and reinforcement learning (De Giacomo et al.
2019).

A critical component of all these applications is the con-
version of LTLf to their equivalent Deterministic Finite-state
Automata (DFA). The LTLf-to-DFA conversion has been
shown to result in a double-exponential blow-up in the worst
case, highlighting its inherent complexity. Despite the theo-
retical complexity, mastering the efficiency of LTLf to DFA
conversion holds the key to advancing applications in these
diverse domains.

Prior works on scalable and efficient LTLf-to-DFA con-
versions have devised compositional methods based on the
syntax of the LTLf formula. These approaches decompose
the formula into its Abstract Syntax Tree (AST) and employ
a bottom-up approach to obtain the final DFA. To elaborate,
first the DFAs are constructed at the node of the tree. Then
the DFAs are composed using standard language-theoretic
and automata-theoretic operations along the AST, till the fi-
nal DFA is constructed at the root of the AST. In order to pre-
vent state-space explosion, DFA minimization is performed
aggressively at the nodes of the AST. This is the approach
adopted in three state-of-the-art tools for LTLf-to-DFA con-
version. The first is based on the tool MONA (Henriksen
et al. 1995). Here, the algorithm constructs a binary AST and
performs DFA minimization at every node of the tree. This
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was addressed in the tool Lisa (Bansal et al. 2020) where
instead of a full AST, the algorithm decomposed the origi-
nal formula at the outermost conjunction only, thus creating
a k-ary AST of single depth. Thus, the roots are subformu-
las as opposed to atomic propositions. The k-ary structure
offers flexibility in developing heuristics to choose the or-
der in which component DFAs are composed. Finally, the
current state-of-the-art Lydia extends Lisa by construct-
ing complete k-ary trees till the roots that are occupied by
propositions (De Giacomo and Favorito 2021).

All these prior approaches have focused on improving the
composition phase. In this work, we focus on the decompo-
sition phase with the goal of reducing the number of compo-
sitions for each formula. We observe that the decomposition
of a formula into its AST may result in the duplication of
semantically or syntactically equivalent formulas at various
nodes. If not assembled together, this may result in repeated
construction of identical DFAs. A naive approach to over-
come this is to store all subformulas and their corresponding
DFAs in an easy-access database. Before the construction of
a DFA at a node, the database is accessed to ensure no du-
plication. With the use of BDD-based representations of the
LTLf formula, one can prevent duplication of semantically
equivalent subformulas as well.

In our work, we reduce the number of compositions even
further. In this work, we re-arrange the AST to obtain a se-
mantically equivalent graph with fewer number of edges,
hence fewer compositions. For instance, consider the for-
mula ϕ =

∧k
i=1(ψ ∨ ϕi). The AST obtained from syntax-

driven decomposition is illustrated in Figure 1. It would re-
quire 2k − 1 compositions; k from each (ψ ∨ ϕi) and k − 1
from the outer conjunction. Despite BDD-based represen-
tations to identify that ψ is common to all, the number of
compositions will remain at 2k − 1. Instead, fewer compo-
sitions would be required if the formula were represented
as ϕ = ψ ∨

∧k
i=1 ϕi. This requires k compositions only;

k − 1 from the conjunction and one more from the disjunc-
tion. The corresponding AST for the new formula is illus-
trated in Figure 1. Fewer compositions would improve the
performance of LTLf-to-DFA translators. In our work, we
present an approach that converts the original AST into an
equivalent AST with fewer edges. The algorithm combines
bottom-up traversal of the graph with syntactic-equivalence
rules. This is used as a preprocessing step in the decompo-



Figure 1: AST Optimization for k = 2

Figure 2: Runtime Cactus Plot of Nim Benchmarks

sition phase in the compositional approach to translate the
formula into automata. We show that this results in signifi-
cant performance improvement across the board i.e. runtime
performance, number of benchmarks solved, and memory
usage. Note that while we deploy the improvements to the
decomposition phase in LTLf-to-DFA conversions, our ap-
proach could have broader applicability in other logic to au-
tomata translations.

Experimental Analysis
We have implemented our algorithm in C++ called Swift.
We compare its performance against the current state-of-the-
art tools Lisa and Lydia. Benchmarks were taken from the
LTLf synthesis track of SYNTCOMP 2023. All experiments
were performed on a system with dual-core 4GB RAM.

We compare the tools on runtime, number of benchmarks
solved, and memory usage. Swift improves performance on
all three accounts.

Runtime Figure 2 presents the performance on the nim
benchmarks from the SYNTCOMP suite. The cactus plot
demonstrates a substantial improvement in runtime perfor-
mance compared to Lisa and Lydia. The nim-benchmarks
are considered the hardest in this suite as the intermediate
subformulas are known to generate large DFAs (i.e. nodes of
the AST are large DFAs) while the final DFA is small. Hence
having fewer DFAs to compute helps improve the perfor-
mance over this class of benchmark. The improvement in
performance can be attributed to our postprocessing result-
ing in a considerable reduction of operations.

Number of benchmarks and Memory Usage Figure 3
presents the performance on single- and double-counter

Figure 3: Runtime Cactus Plot of Counter Benchmarks

benchmarks from the SYNTCOMP suite. These formulas
have very few repeated subformulas. As seen in Figure 3,
we saw a substantial improvement in runtime compared to
Lisa-Explicit while obtaining comparable results to Lydia.
However, our Swift solved more benchmarks than Lydiadue
to reduced memory usage. These could be attributed to the
smaller AST structure resulting in less storage.

Future Work
In the future, we will incorporate further algorithmic im-
provements, including an on-the-fly construction of the re-
duced AST and further leverage the similarity and symmetry
between formulas. We will also attempt more compact rep-
resentations of the AST. Finally, we will examine the theo-
retical implications of our algorithm i.e. does it generate the
minimal AST for a given formula.
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