
Specification-Guided Learning of Nash Equilibria
with High Social Welfare

Kishor Jothimurugan
University of Pennsylvania

Suguman Bansal
University of Pennsylvania

Osbert Bastani
University of Pennsylvania

Rajeev Alur
University of Pennsylvania

Abstract

Reinforcement learning has been shown to be an effective strategy for automatically
training policies for challenging control problems. Focusing on non-cooperative
multi-agent systems, we propose a novel reinforcement learning framework for
training joint policies that form a Nash equilibrium. In our approach, rather than
providing low-level reward functions, the user provides high-level specifications
that encode the goal of each agent. Then, guided by the structure of the specifica-
tions, our algorithm searches over policies to identify one that provably forms an
ε-Nash equilibrium (with high probability). Importantly, it prioritizes policies in
a way that maximizes social welfare across all agents. Our empirical evaluation
demonstrates that our algorithm computes equilibrium policies with high social
welfare, whereas state-of-the-art baselines either fail to compute Nash equilibria or
compute ones with comparatively lower social welfare.

1 Introduction

Reinforcement learning (RL) is an effective strategy for automatically synthesizing controllers for
challenging control problems. As a consequence, there has been interest in applying RL to multi-agent
systems. For example, RL has been used to coordinate agents in cooperative systems to accomplish
a shared goal [Neary et al., 2021]. Our focus is on non-cooperative systems, where the agents are
trying to achieve their own goals [Littman, 1994]; for such systems, the goal is typically to learn a
policy for each agent such that the joint strategy profile forms a Nash equilibrium.

A key challenge facing existing approaches is task specification. First, they typically require that
the task for each agent is specified as a reward function. However, reward functions tend to be very
low-level, making them difficult to manually design; furthermore, they often obfuscate high-level
structure in the problem known to make RL more efficient in the single-agent [Icarte et al., 2018] and
cooperative [Neary et al., 2021] settings. Second, they typically focus on computing an arbitrary Nash
equilibrium. However, in many settings, the user is a social planner trying to optimize the overall
social welfare of the system, and most existing approaches are not designed to optimize welfare.

We propose a novel multi-agent RL framework for learning policies from high-level specifications
(one specification per agent) such that the resulting joint policy (i) has high social welfare, and (ii) is an
ε-Nash equilibrium (for a given ε). We formulate this problem as a constrained optimization problem
where the goal is to maximize social welfare under the constraint that the joint policy is an ε-Nash
equilibrium. Our algorithm for solving this optimization problem uses an enumerative search strategy.
First, it enumerates candidate policies in decreasing order of social welfare. To ensure a tractable
search space, it restricts to policies that conform to the structure of the user-provided specification.

Workshop on Safe and Robust Control of Uncertain Systems at the 35th Conference on Neural Information
Processing Systems (NeurIPS 2021), Online.

Then, for each candidate policy, it uses an explore-then-exploit self-play RL algorithm [Bai and Jin,
2020] to compute punishment strategies that are triggered when some agent deviates from the original
joint policy. It also computes the maximum benefit each agent derives from deviating, which can be
used to determine whether the joint policy augmented with punishment strategies forms an ε-Nash
equilibrium; if so, it returns the joint policy.

Intuitively, the enumerative search tries to optimize social welfare, whereas the self-play RL algorithm
checks whether the ε-Nash equilibrium constraint holds. Since this RL algorithm comes with PAC
guarantees, our algorithm is guaranteed to return an ε-Nash equilibrium with high probability.

Motivating example. Consider the road intersection scenario in Figure 1. There are four cars;
three are traveling east to west and one is traveling north to south. At any stage, each car can either
move forward one step or stay in place. Suppose each car’s specification is as follows: (a) Black
car: Cross the intersection before the green and orange cars. (b) Blue car: Cross the intersection
before the black car and stay a car length ahead of the green and orange cars. (c) Green car: Cross
the intersection before the black car. (d) Orange car: Cross the intersection before the black car. We
also require that the cars do not crash into one another.

Figure 1: Intersection

Clearly, not all agents can achieve their goals. The next highest
social welfare is for three agents to achieve their goals. In particular,
one possibility is that all cars except the black car achieve their goals.
However, the corresponding joint policy requires that the black car
does not move, which is not a Nash equilibrium—there is always a
gap between the blue car and the other two cars behind, so the black
car can deviate by inserting itself into the gap to achieve its own goal.
Our algorithm uses self-play RL to optimize the policy for the black
car, and finds that the other agents cannot prevent the black car from
improving its outcome in this way. Thus, it correctly rejects this
joint policy. Eventually, our algorithm computes a Nash equilibrium
in which the black and blue cars achieve their goals whereas the
green and the orange cars do not achieve their goals.

2 Problem Formulation

Markov Game We consider an n-agent Markov gameM = (S,A, P,H, s0) with a finite set of
states S , actions A = A1 × · · · ×An where Ai is a finite set of actions available to agent i, transition
probabilities P (s′ | s, a) for s, s′ ∈ S and a ∈ A, finite horizon H , and initial state s0 [Littman,
1994]. A trajectory ζ ∈ Z is a finite sequence ζ = s0a0 . . . at−1st where sk ∈ S, ak ∈ A; we use
|ζ| = t to denote the length of the trajectory ζ and aik ∈ Ai to denote the action of agent i in the joint
action ak.

For any i ∈ [n], let D(Ai) denote the set of distributions over Ai. A policy for agent i is a function
πi : Z → D(Ai) mapping trajectories to distributions over actions. A policy πi is deterministic if
for any ζ ∈ Z , there is an action ai ∈ Ai such that πi(ζ)(ai) = 1; in this case, we also use πi(ζ)
to denote the action ai. A joint policy π : Z → D(A) maps finite trajectories to distributions over
joint actions. We use (π1, . . . , πn) to denote the joint policy in which agent i chooses its action in
accordance to πi. We denote by Dπ the distribution over H-length trajectories inM induced by π.

We consider the reinforcement learning setting in which we do not know the probabilities P but
instead only have access to a simulator of M. Typically, we can only sample trajectories of M
starting at s0. Some parts of our algorithm are based on an assumption which allows us to obtain
sample trajectories starting at any state that has been observed before. For example, if taking action
a0 in s0 leads to a state s1, we can store s1 and obtain future samples starting at s1.

Assumption 2.1. We can obtain samples from P (· | s, a) for any previously observed state s and
action a.

Specification Language Agent specifications are expressed in SPECTRL. Every SPECTRL specifi-
cation φ can be represented by an abstract graph [Jothimurugan et al., 2021].

2

Algorithm 1 HIGHNASH
Inputs: Markov game (with unknown transition probabilities)M with n-agents, agent specifications
φ1, . . . , φn, Nash factor ε, precision δ, failure probability p.
Outputs: ε-NE, if found.

1: Policies← LearnPolicies(φ1, . . . , φn,M)
2: PrioritizedPolicies← RankPolicies(Policies)
3: for joint policy π ∈ PrioritizedPolicies do
4: // Can π be extended to an ε-NE?
5: Initialize ε-NE πN ← π
6: for agent j ∈ {1, . . . , n} do
7: // Solve min-max game against agent j
8: Mj ← SimulatePunishmentGame(M, π, φj , j)
9: ˜devj , π̄−j ← SolveMinMaxGame(Mj , δ, p)

10: if ˜devj ≤ Jj(π) + ε then
11: πN ← πN on π̄−j // Add punishment strat.
12: else
13: goto Line 3 // π cannot be extended to an ε-NE; try next policy
14: return πN
15: return No ε-NE found

Nash Equilibrium and Social Welfare Given a Markov gameM with unknown transitions and
specifications φ1, . . . , φn for the n agents respectively, the score of agent i from a joint policy π is
given by Ji(π) = Prζ∼Dπ [ζ |= φi].

Our goal is to compute a high-value ε-Nash equilibrium in M w.r.t these scores. Given a joint
policy π = (π1, . . . , πn) and an alternate policy π′i for agent i, let (π−i, π

′
i) denote the joint policy

(π1, . . . , π
′
i, . . . , πn). Then, a joint policy π is an ε-Nash equilibrium if for all agents i and all

alternate policies π′i, Ji(π) ≥ Ji((π−i, π′i))− ε. Then, our goal is to compute a joint policy π that
maximizes the social welfare welfare(π) = 1

n

∑n
i=1 Ji(π) subject to the constraint that π is an

ε-Nash equilibrium.

3 Algorithm Overview

Our algorithm for computing a high-welfare ε-Nash equilibrium proceeds in two phases. The first
phase is a prioritized enumeration procedure that learns deterministic joint policies in the environment
and ranks them in decreasing order of social welfare. The second phase is a verification phase that
checks whether a given joint policy can be extended to an ε-Nash by adding punishment strategies.
Our algorithm returns once an ε-Nash equilibrium is found. Algorithm 1 summarizes our framework;
lines 1-2 and 5-12 are the prioritized enumeration and verification phases, respectively.

For enumeration it is impractical to enumerate all joint policies, since the total number of determin-
istic joint policies may be exponential in |S|H . Thus, the prioritized enumeration phase applies a
specification-guided heuristic to reduce the number of joint policies considered (Section 4). The
resulting search space is independent of |S| and H , depending only on the specifications φi. Since
the environment is unknown, these joint policies are trained using compositional RL.

For verification (Section 5), we propose a probably approximately correct (PAC) procedure to
determine whether a given joint policy can be extended to an ε-Nash equilibrium. Our approach is to
reduce checking if a joint policy is an ε-Nash equilibrium to solving a two-agent zero-sum game for
each agent. The key insight is that for a joint policy to be an ε-Nash equilibrium, unilateral deviations
by any agent must be successfully punished by the coalition of all other agents. In such a punishment
game, the deviating agent attempts to maximize its score while the coalition of other agents attempts
to minimize its score, leading to a competitive min-max game between the agent and the coalition. If
the deviating agent can improve its score by a margin ≥ ε, then the joint policy cannot be extended
to an ε-Nash equilibrium. Alternatively, if no agent can increase their score by a margin ≥ ε, then
the joint policy (augmented with punishment strategies) is an ε-Nash equilibrium. Each punishment
game is solved using a self-play RL algorithm for learning policies in min-max games with unknown
transitions [Bai and Jin, 2020], after converting specification-based scores to reward-based scores.

3

While the initial joint policy is deterministic, the punishment strategies can be probabilistic. Our
algorithm is guaranteed to return an ε-Nash equilibrium with high probability, when it returns.

4 Prioritized Enumeration

We summarize our specification-guided compositional RL algorithm for learning a finite number of
deterministic joint policies in an unknown environment under Assumption 2.1 These policies are then
ranked in decreasing order of their (estimated) social welfare.

Our learning algorithm harnesses the structure of specifications, exposed by their abstract graphs,
to curb the number of joint policies to learn. For every set of active agents P ⊆ [n], we construct
a product abstract graph, from the abstract graphs of all active agents’ specifications, such that if
a trajectory ζ inM corresponds to a path in the product that ends in a final state then ζ satisfies
all active agents’ specifications. That is, our procedure learns one joint policy for every path in the
product graph that reaches a final state. By learning joint policies for every set of active agents, we are
able to learn policies under which some agents may not satisfy their specifications, which is required
for learning joint policies in non-cooperative settings. Note that the number of paths (and hence the
number of policies considered) is independent of |S| and H , and depends only on the number of
agents and their specifications.

One caveat is that the number of paths may be exponential in the number of states in the product
graph. It would be impractical to naı̈vely learn a joint policy for every path. Instead, we design an
efficient compositional RL algorithm that learns a joint policy for each edge in the product graph;
these edge policies are then composed together to obtain joint policies for paths in the product graph.

4.1 Abstract Graph

Every SPECTRL specification φ can be represented by an abstract graph G = (U,E, u0, F, β,Zsafe),
where the vertices U and directed edges E ⊆ U × U form a DAG, u0 ∈ U is the initial state, and
F ⊆ U are the final states [Jothimurugan et al., 2021]. The concretization map β : U → 2S maps
abstract vertices to subgoal regions in the environment, The set of safe trajectories Zsafe is the union
of Zesafe and Zfsafe for all e ∈ E and f ∈ F , where Zesafe and Zfsafe are the set of safe trajectories in the
environment taken to traverse an edge e ∈ E and after reaching a final vertex f ∈ F , respectively.

Intuitively, the vertices of G are subgoal regions (i.e., subsets of the state space where an intermediate
goal is satisfied), and edges of G are transitions between subgoal regions.

A finite trajectory ζ = s0a0s1a1 . . . at−1st inM satisfies G (denoted ζ |= G) if there is a sequence
of indices 0 = k0 ≤ k1 < · · · < k` ≤ t and a path ρ = u0 → u1 → · · · → u` in G such that (i)
u` ∈ F , (ii) for all z ∈ {0, . . . , `}, we have skz ∈ β(uz), (iii) for all z < `, letting ez = uz → uz+1,
we have ζkz :kz+1

∈ Zezsafe, and (iv) ζk`:t ∈ Z
u`
safe. Then, for any specification φ and any trajectory ζ it

has been shown that ζ |= φ if and only if ζ |= Gφ. Finally, the number of states in an abstract graph
is linear in the size of the specification. Therefore, WLOG, the specification of each agent can be
assumed to be an abstract graph.

4.2 Product Abstract Graph

Let φ1, . . . , φn be the specifications for the n-agents, respectively, let Gi = (Ui, Ei, u
i
0, Fi, βi,Zsafe,i)

be the abstract graph of specification φi in the environmentM. We construct a product abstract graph
for every set of active agents in [n]. The product graph for a set of active agentsP ⊆ [n] is used to learn
joint policies that satisfy the specification of all agents in P with high probability. The specifications
of non-active agents in [n] \ P may not be satisfied by runs generated by these joint policies. For
the set of agents P = {i1, . . . , im} ⊆ [n], the product graph GP = (U,E, u0, F, β,Zsafe) is an
asynchronous product of Gi for all i ∈ P . Here, U = Πi∈PUi is the set of product vertices,
u0 = (ui10 , . . . , u

im
0) is the initial vertex, and F = Πi∈PFi ⊆ U is the set of final vertices. A vertex

(ui1 , . . . uim) ∈ F if ui ∈ Fi for all i ∈ P . The edge relation E accounts for the asynchronous
product. An edge e = (ui1 , . . . , uim)→ (vi1 , . . . , vim) ∈ E if at least for one agent i ∈ P the edge
ui → vi ∈ Ei and for the remaining agents, ui = vi. For an edge e ∈ E, we denote the set of
agents i ∈ P for which ui → vi ∈ Ei by Progress(e). Finally, β and Zsafe are the collections of
concretization maps and safe trajectories of agents in P . We denote the i-th component of a product

4

vertex u ∈ U by ui for agent i ∈ P . Similarly, the i-th component in an edge e is denoted by ei for
i ∈ P .

A trajectory ζ = s0 → · · · → st achieves edge e = u → v in GP if all progressing agents
i ∈ Progress(e) reach their subgoal region βi(vi) along the trajectory and the trajectory is safe for
all agents in P . For a progressing agent i ∈ Progress(e), the initial segment of the rollout until the
agent reaches its target subgoal region βi(vi) should be safe with respect to the edge ei. After that,
the rollout should be safe with respect to every future possibility for the agent. This is required to
ensure continuity of the rollout into adjacent edges in the product graph GP . For the same reason, we
require that the entire rollout is safe with respect to all future possibilities for non-progressing agents.
Note that we are not concerned with non-active agents in [n] \ P .
Definition 4.1. Given P ⊆ [n], a rollout ζ = s0 → · · · → st achieves a path ρ = u0 → · · · → u` in
GP (denoted ζ |=P ρ) if there exists indices 0 = k0 ≤ k1 ≤ · · · ≤ k` ≤ t such that (i) u` ∈ F , (ii)
ζkz :kz+1

achieves uz → uz+1 for all 0 ≤ z < `, and (iii) ζk`:t ∈ Z
u`,i
safe,i for all i ∈ P .

Theorem 4.2. Let ρ = u0 → u1 → · · · → u` be a path in the product abstract graph GP for
P ⊆ [n]. Suppose trajectory ζ |=P ρ. Then ζ |= φi for all i ∈ P .

That is, joint policies that maximize the probability of achieving paths in the product abstract graph
GP have high social welfare w.r.t. the active agents P .

4.3 Compositional RL Algorithm

Our compositional RL algorithm learns joint policies corresponding to paths in product abstract
graphs. For every P ⊆ [n], it learns a joint policy πe for each edge in the product abstract graph GP ,
which is the (deterministic) policy that maximizes the probability of achieving e from a given initial
state distribution. We use single-agent RL to learn edge policies cooperatively. The reward function
is designed to capture the reachability objective of progressing agents and the safety objective of all
agents. The edges are learned in topological order, allowing us to learn an induced state distribution
for each product vertex u prior to learning any edge policies from u; this distribution is used as the
initial state distribution when learning outgoing edge policies from u. In more detail, the distribution
for the initial vertex of GP is taken to be the initial state distribution of the environment; for every
other product vertex, the distribution is the average over distributions induced by executing edge
policies for all incoming edges.

Given edge policies Π along with a path ρ = u0 → u1 → · · · → u` = u ∈ F in GP , we define a
path policy πρ to navigate from u0 to u. In particular, πρ executes πe[z], where e[z] = uz → uz+1

(starting from z = 0) until the resulting trajectory achieves e[z], after which it increments z ← z + 1
(unless z = `). That is, πρ is designed to achieve the sequence of edges in ρ. Note that πρ is a
finite-state deterministic joint policy in which vertices on the path correspond to the memory states
that keep track of the index of the current policy. This way, we obtain finite-state joint policies by
learning edge policies only. This process is repeated for all sets of active agents P ⊆ [n]. These
finite-state joint policies are then ranked by estimating their social welfare on several simulations.

5 Nash Equilibria Verification

Has	any	agent	
deviated	from	

𝜋 in 𝜁?
History	𝜁

Use	punishment	strategy	
𝜏!" if	𝑗 is	first	to	deviate

Output
𝜋!(𝜁)

No

Yes

Figure 2: πi augmented with pun-
ishment strategies.

The prioritized enumearation phase produces a list of path
policies which are ranked by the total sum of scores. Each
path policy is deterministic and also finite state. Since the
joint policies are trained cooperatively, they are typically not
an ε-Nash equilibrium. Our verification algorithm attempts to
modify a given joint policy by adding punishment strategies so
that the resulting policy is an ε-Nash equilibrium.

Concretely, it takes as input a finite-state deterministic joint
policy π = (M,α, σ,m0) where M is a finite set of memory
states, α : S × A×M →M is the memory update function,
σ : S ×M → A maps states to (joint) actions and m0 is the
initial policy state. The extended memory update function α̂ : Z →M is given by α̂(ε) = m0 and
α̂(ζstat) = α(st, at, α̂(ζ)). Then, π is given by π(ζst) = σ(st, α̂(ζ)). The policy πi of agent i
simply chooses the ith component of π(ζ) for any history ζ.

5

The verification algorithm learns one punishment strategy τij : Z → D(Ai) for each pair (i, j) of
agents. As outlined in Figure 2, the modified policy for agent i uses πi if every agent j has taken
actions according to πj in the past. In case some agent j′ has taken an action that does not match the
output of πj′ , then agent i uses the punishment strategy τij , where j is the agent that deviated the
earliest (ties broken arbitrarily). The goal of verification is to check if there is a set of punishment
strategies {τij | i 6= j} such that after modifying each agent’s policy to use them, the resulting joint
policy is an ε-Nash equilibrium.

5.1 Problem Formulation

We denote the set of all punishment strategies of agent i by τi = {τij | j 6= i}. We define the
composition of πi and τi to be the policy π̃i = πi on τi such that for any trajectory ζ = s0

a0−→
· · · at−1−−−→ st, we have

• π̃i(ζ) = πi(ζ) if for all 0 ≤ k < t, ak = π(ζ0:k)—i.e., no agent has deviated so far,

• π̃i(ζ) = τij(ζ) if there is a k such that (i) ajk 6= πj(ζ0:k) and (ii) for all ` < k, a` = π(ζ0:`).
If there are multiple such j’s, an arbitrary but consistent choice is made (e.g., the smallest
such j).

Then, the verification problem is to check if there exists a set of punishment strategies τ =
⋃
i τi

such that the joint policy π̃ = π on τ = (π̃1, . . . , π̃n) is an ε-Nash equilibrium. In other words, the
problem is to check if there exists a policy π̃i for each agent i such that (i) π̃i follows πi as long as no
other agent j deviates from πj and (ii) the joint policy π̃ = (π̃1, . . . , π̃n) is in ε-Nash equilibrium.

5.2 High-Level Procedure

Our approach is to compute the best set of punishment strategies τ∗ and check if π on τ∗ is an ε-Nash
equilibrium. The best punishment strategy against agent j is the one that minimizes its incentive to
deviate. To be precise, we define the best response of j with respect to a joint policy π = (π1, . . . , πn)
to be brj(π) ∈ arg maxπ′j Jj(π−j , π

′
j). Then, the best set of punishment strategies τ∗ is one that

minimizes the value of brj(π on τ) for all j ∈ [n]. To be precise, define τ [j] = {πij | i 6= j} to be
the set of punishment strategies against agent j. Then, we have

τ∗[j] ∈ arg min
τ [j]

Jj((π on τ)−j ,brj(π on τ)).

Note that both brj(π on τ) and Jj((π on τ)−j , π
′
j) are independent of τ \ τ [j]; therefore, we can

separately compute τ∗[j] for each j and take τ∗ =
⋃
j τ
∗[j]. The following theorem follows by

definition of τ∗.
Theorem 5.1. Given joint policy π = (π1, . . . , πn), if there is a set of punishment strategies τ such
that π on τ is an ε-Nash equilibrium, then π on τ∗ is an ε-Nash equilibrium, where τ∗ is the set of
best punishment strategies w.r.t. π. Furthermore, π on τ∗ is an ε-Nash equilibrium iff for all j,

Jj((π on τ∗)−j ,brj(π on τ∗))− ε ≤ Jj(π on τ∗) = Jj(π).

Thus, to solve the verification problem, it suffices to compute (or estimate), for all j, the optimal
deviation scores

devj = min
τ [j]

max
π′j

Jj((π on τ)−j , π
′
j). (1)

5.3 Reduction to Min-Max Games

Next, we describe how to reduce the computation of punishment strategies to a standard self-play RL
algorithm. Given a deterministic, finite-state joint policy π = (M,α, σ,m0), we first translate the
problem from the specification setting to the reward-based setting using reward machines.

Reward Machines. A reward machine (RM) [Icarte et al., 2018] is a tuple R = (Q, δu, δr, q0),
where Q is a finite set of states, δu : S ×A×Q→ Q is the state transition function, δr : S ×Q→
[−1, 1] and q0 is the initial RM state. Given a trajectory ζ = s0a0 . . . at−1st, the reward assigned

6

Algorithm 2 Verify Nash
Inputs: Finite state deterministic joint policy π, RMsRj for all j, Nash factor ε, precision δ, failure
probability p.
Outputs: True or False.

1: existsNE← True
2: M̃ ← BFS-ESTIMATE(M, δ, p)
3: for agent j ∈ {1, . . . , n} do
4: M̃j ← CONSTRUCTGAME(M̃, j,Rj , π)

5: ˜devj ← minπ̄2
maxπ̄1

J̄M̃j (π̄1, π̄2)
6: existsNE← existsNE ∧ (˜devj ≤ Jj(π) + ε)
7: return existsNE

by R to ζ is R(ζ) =
∑t−1
k=0 δr(sk, qk), where qk+1 = δu(sk, ak, qk) for all k. For any SPECTRL

specification φ, we can define an RM such that the reward assigned to a trajectory ζ indicates whether
ζ satisfies φ.

Theorem 5.2. Given any SPECTRL specification φ, we can construct an RMRφ such that for any
trajectory ζ of length t+ 1,Rφ(ζ) = 1(ζ0:t |= φ).

For an agent j, let Rj denote Rφj = (Qj , δ
j
u, δ

j
r , q

j
0). Letting D̃π be the distribution over length

H+1 trajectories induced by using π, we have Eζ∼D̃π [Rj(ζ)] = Jj(π). The deviation values defined
in Eq. 1 are now min-max values of expect reward, except that it is not in a standard min-max setting
since the optimized policies of agents other that j appear in the augmented policy π on τ . This issue
can be handled by considering a product ofM with the reward machineRj and the finite state joint
policy π. The following theorem follows naturally.

Theorem 5.3. For any agent j, we can construct a simulator for an augmented two-player zero-sum
Markov gameMj (with rewards) which has the following properties.

• The number of states inMj is at most 2|S||M ||Qj |.

• The actions of player 1 is Aj , and the actions of player 2 is A−j .

• The min-max value of the two player game corresponds to the deviation cost of j, i.e.,
devj = minπ̄2

maxπ̄1
E
[∑H

k=0Rj(s̄k, ak) | π̄1, π̄2

]
, where the expectation is w.r.t. the

distribution over length H + 1 trajectories generated by using policy (π̄1, π̄2) inMj .

5.4 Solving Min-Max Games

The min-max gameMj can be solved using self-play RL algorithms. Many of these algorithms
provide probabilistic approximation guarantees for computing the min-max value of the game. We
use a model-based algorithm, similar to the one proposed by Bai and Jin [2020], that first estimates
the modelMj and then solves the game in the estimated model.

One approach is to use existing algorithms for reward-free exploration to estimate the model [Jin
et al., 2020], but this approach requires estimating eachMj separately. Under Assumption 2.1, we
provide a simpler and more sample-efficient algorithm, called BFS-ESTIMATE, for estimatingM.
BFS-ESTIMATE performs a search over the transition graph ofM by exploring previously seen
states in a breadth first manner. When exploring a state s, multiple samples are collected by taking all
possible actions in s several times and the corresponding transition probabilities are estimated. After
obtaining an estimate ofM, we construct estimates ofMj for all j with the following guarantee.

Theorem 5.4. Under Assumption 2.1, for any δ > 0 and any p ∈ (0, 1], BFS-ESTIMATE computes

estimates M̃j ofMj for all j using O
(
|S|3|M |2|Q|4|A|H4

δ2 log
(
|S||A|
p

))
sample steps such that with

probability at least 1− p, for all j,
∣∣∣minπ̄2

maxπ̄1
J̄M̃j (π̄1, π̄2)− devj

∣∣∣ ≤ δ, where J̄M̃j (π̄1, π̄2)

is the expected reward over length H + 1 trajectories generated by (π̄1, π̄2) in M̃j .

7

Spec. Num. of
agents Algorithm welfare(π)

(avg ± std)
εmin(π)

(avg ± std)

Num. of
runs

terminated

Avg. num. of
sample steps
(in millions)

φ1 3
HIGHNASH 0.33 ± 0.00 0.00 ± 0.00 10 1.78

NVI 0.32 ± 0.00 0.00 ± 0.00 10 1.92
MAQRM 0.18 ± 0.01 0.51 ± 0.01 10 2.00

φ2 4
HIGHNASH 0.55 ± 0.10 0.01 ± 0.02 10 11.53

NVI 0.04 ± 0.01 0.02 ± 0.01 10 12.60
MAQRM 0.12 ± 0.01 0.20 ± 0.03 10 15.00

φ3 4
HIGHNASH 0.49 ± 0.01 0.00 ± 0.01 10 11.26

NVI 0.45 ± 0.01 0.00 ± 0.01 10 12.60
MAQRM 0.11 ± 0.01 0.22 ± 0.02 10 15.00

φ4 3
HIGHNASH 0.90 ± 0.15 0.00 ± 0.00 10 2.16

NVI 0.98 ± 0.00 0.00 ± 0.00 4 2.18
MAQRM 0.23 ± 0.01 0.39 ± 0.04 10 2.00

φ5 5
HIGHNASH 0.58 ± 0.02 0.00 ± 0.00 10 62.17

NVI 0.05 ± 0.01 0.01 ± 0.01 7 80.64
MAQRM Timeout Timeout 0 Timeout

Table 1: Results in Intersection Environment. Total of 10 runs per benchmark. Timeout = 24 hrs.

The min-max value of M̃j is computed using value iteration. Our full verification algorithm is
summarized in Algorithm 2. It checks if ˜devj ≤ Jj(π) + ε for all j, and returns True if so and
False otherwise. The following guarantees follow from Theorem 5.4.

Corollary 5.5 (Soundness). If a policy π cannot be converted to an (ε + δ)-Nash equilibrium by
adding punishment strategies, then VERIFYNASH returns False with probability at least 1− p.

Corollary 5.6 (Completeness). If a policy π can be converted to an (ε − δ)-Nash equilibrium by
adding punishment strategies, then VERIFYNASH returns True with probability at least 1− p.

6 Experiments

We evaluate our algorithm on the Intersection environment illustrated in Figure 1, which consists of
k-cars (agents) at a 2-way intersection of which k1 and k2 cars are placed along the N-S and E-W
axes, respectively. We aim to answer the following: (a). Can our approach be used to learn ε-Nash
equilibria? (b). Can our approach learn policies with high social welfare?

We compare our NE computation method (HIGHNASH) to two approaches for learning in non-
cooperative games. The first, MAQRM, is an adaption of the reward machine based learning algorithm
proposed by Neary et al. [2021]. The second baseline, NVI, is a model-based approach that first
estimates transition probabilities, and then computes a Nash equilibrium in the estimated game using
value iteration for stochastic games [Kearns et al., 2000]. More details about the environment and
the baselines can be found in the Appendix. The comparison uses two metrics: (i) the social welfare
welfare(π) of the learned joint policy π, and (ii) an estimate of the minimum value of ε for which π
forms an ε-Nash equilibrium: εmin(π) = max{Ji(π−i,bri(π))− Ji(π) | i ∈ [n]}. Here, εmin(π) is
computed using single agent RL to compute the best response bri(π) for each i.

Observations (Summarized in Table 1) For each specification, we ran all algorithms 10 times with
a timeout of 24 hours. Our approach learns policies that have low values of εmin, indicating that it
can be used to learn ε-Nash equilibria for small values of ε. NVI also has similar values of ε, which is
expected since NVI provides guarantees similar to our approach w.r.t. Nash equilibria computation.
On the other hand, MAQRM learns policies with large values of εmin, implying that it fails to converge
to a Nash equilibrium in most cases. Our experiments show that our approach consistently learns
policies with high social welfare compared to the baselines. For instance, φ3 corresponds to the
specifications in the motivating example for which our approach learns a joint policy that causes both
blue and black cars to achieve their goals. Although NVI succeeds in learning policies with high
social welfare for some specifications (φ1, φ3, φ4) it fails to do so for others (φ2, φ5).

8

References
Yu Bai and Chi Jin. Provable self-play algorithms for competitive reinforcement learning. In

Proceedings of the 37th International Conference on Machine Learning, 2020.

Rodrigo Toro Icarte, Toryn Klassen, Richard Valenzano, and Sheila McIlraith. Using reward machines
for high-level task specification and decomposition in reinforcement learning. In International
Conference on Machine Learning, pages 2107–2116. PMLR, 2018.

Chi Jin, Akshay Krishnamurthy, Max Simchowitz, and Tiancheng Yu. Reward-free exploration for
reinforcement learning. In International Conference on Machine Learning, pages 4870–4879.
PMLR, 2020.

Kishor Jothimurugan, Suguman Bansal, Osbert Bastani, and Rajeev Alur. Compositional reinforce-
ment learning from logical specifications. arXiv preprint arXiv:2106.13906, 2021.

Michael Kearns, Yishay Mansour, and Satinder Singh. Fast planning in stochastic games. In
Proceedings of the Sixteenth conference on Uncertainty in artificial intelligence, pages 309–316,
2000.

Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In
Machine learning proceedings 1994, pages 157–163. Elsevier, 1994.

Richard D. McKelvey, Andrew M. McLennan, and Theodore L. Turocy. Gambit: Software tools for
game theory, 2014.

Cyrus Neary, Zhe Xu, Bo Wu, and Ufuk Topcu. Reward machines for cooperative multi-agent
reinforcement learning, 2021.

Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Valenzano, and Sheila A. McIlraith. Reward machines:
Exploiting reward function structure in reinforcement learning. arXiv preprint arXiv:2010.03950,
2020.

9

Algorithm 3 Nash Value Iteration
Inputs: n-agent Markov gameM with rewards, horizon H .
Outputs: Nash equilibrium joint policy π = (π1, . . . , πn).

1: Initialize joint policy π = (π1, . . . , πn)
2: Initialize value function V : S × [H + 1]→ Rn to be the zero map
3: for t ∈ {H,H − 1, . . . , 1} do
4: for s ∈ S do
5: Initialize step game Gts : A → Rn
6: for a = (a1, . . . , an) ∈ A do
7: Gts(a1, . . . , an) = R(s, a) + Es′∼P (·|s,a)[V (s′, t+ 1)]
8: (d1, d2, . . . , dn)← BEST-NASH-GENERAL-SUM(Gts) ∈ D(A1)× · · · × D(An)
9: V (s, t)← Ea1∼d1,a2∼d2,...,an∼dn [Gts(a1, . . . , an)]

10: π(s, t)← (d1, d2, . . . , dn)
11: return π

A Baseline

A.1 NVI

This baseline first computes an estimate M̃ of M using BFS-ESTIMATE and then computes a
product of M̃ with the reward machines corresponding to the agent specifications in order to define
rewards at every step. It then solves the resulting general sum game M̃′ using value iteration. The
value iteration procedure is outlined in Algorithm 3 which uses BEST-NASH-GENERAL-SUM to
solve n-player general-sum strategic games (one-step games) at each step. When there are multiple
Nash equilibria for a step game, BEST-NASH-GENERAL-SUM chooses one with the highest social
welfare (for that step). In our experiments, we use the library gambit [McKelvey et al., 2014] for
solving the step games.

A.2 MAQRM

The baseline (Algorithm 4) performs a multi-agent variant of QRM [Icarte et al., 2018, Toro Icarte
et al., 2020]. We derive reward machines from agent specifications.

We learn one Q-function for every agent. The Q-function for the i-th agent, denoted Qi : S ×
Πi∈[n]Ui → Ai, can be used to derive the best action for the i-th agent from the current state of the
environment and reward machines of all agents. In every step, Qi is used to sample an action ai
for the i-th agent. The joint action (ai)i∈[n] is used to take a step in the environment and all reward
machines. Finally, each Qi is individually updated according to the reward gained by the i-th agent.

For notational convenience, we let q α−→ q′ denote q ← (1− α) · q + α · q′.

B Intersection Environment

The state consists of the location of all cars where the location of a single car is a non-negative integer.
1 corresponds to the intersection, 0 corresponds to the location one step towards the south or west
of the intersection (depending on the car) and locations greater than 1 are to the east or north of the
intersection. Each agent has two actions. STAY stays at the current position. MOVE decreases the
position value by 1 with probability 0.95 and stays with probability 0.05.

Specifications

φ1 Two N-S cars both starting at 3 and one E-W car starting at 2. N-S cars’ goal is to reach 0 before
the E-W car without collision. E-W car’s goal is to reach 0 before both N-S agents without
collision.

φ2 Same as motivating example except that blue car is not required to stay a car length away from
green and orange cars.

φ3 Same as motivating example.

10

Algorithm 4 Multi-agent QRM
Inputs: n-agent Markov gameM = (S,A = Πi∈[n]Ai, P,H, s0), agent specifications φ1, . . . φn,
learning rate α ∈ (0, 1], discount factor γ ∈ (0, 1], ε ∈ (0, 1]
Outputs: Joint policy π = (π1, . . . , πn).

1: for i ∈ [n] do (Ui, δ
i
u, δ

i
r, u

i
0)← RewardMachine(φi)

2: // Initialize environment state, reward machines state, and Q-functions
3: s← s0 and for i ∈ [n] do ui ← ui0
4: for i ∈ [n] do InitializeQi(s, (u1, . . . , un), ai) for all states s ∈ S, ui ∈ Ui, and actions ai ∈ Ai
5: for l← 0 to num steps do
6: // Sample actions from policy derived from Q-functions
7: for i ∈ [n] do choose action ai ∈ Ai at (s, (u1, . . . , un)) using policy derived from Qi (e.g.,

ε-greedy)
8: // Take a step in environment and the reward machines
9: Take action a = (a1, . . . an) inM and observe the next state s′

10: for i ∈ [n] do compute the reward ri ← δir(s, ui) and next RM state u′i ← δiu(s, a, ui))
11: // Update all Q-functions
12: if s′ is terminal then
13: for i ∈ [n] do Qi(s, (u1, . . . , un), a)

α←− ri
14: else
15: for i ∈ [n] do Qi(s, (u1, . . . , un), ai)

α←− ri + γ ·maxa′i∈Ai Qi(s
′, (u′1, . . . , u

′
n), a′i)

16: if s′ is terminal then
17: // Reset environment state and reward machines state
18: s← s0 and for i ∈ [n] do ui ← ui0
19: else
20: s← s′ and for i ∈ [n] do ui ← u′i
21: for i ∈ [n] do πi ← Best action policy derived from Qi
22: return (π1, . . . , πn)

φ4 Two N-S agents (0 and 1) both starting at 3 and one E-W agent (2) starting at 3. Agent 0’s task is
to reach 0 before other two agents. Agent 1’s task is to reach 0. Agent 2’s task is to reach 0
before agent 1. All agents must avoid collision.

φ5 Two N-S cars starting at 2 and 3 and three E-W cars all starting at 2, 3 and 4, respectively. N-S
cars’ goal is to reach 0 before the E-W cars without collision. E-W cars’ goal is to reach 0
before both N-S cars without collision.

11

