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Abstract. The problem of reinforcement learning (RL) is to generate
an optimal policy w.r.t. a given task in an unknown environment. Tra-
ditionally, the task is encoded in the form of a reward function which
becomes cumbersome for long-horizon goals. An appealing alternate is to
use logical specifications, opening the direction of RL from logical spec-
ifications. This paper summarizes the trials and triumphs in developing
highly performant algorithms and obtain theoretical guarantees in RL
from logical specifications.

1 Introduction

The problem of Reinforcement Learning (RL) is to generate a policy for a given
task in an unknown environment by continuously interacting with it [30]. When
combined with neural-networks (NN), RL has made remarkable strides in con-
trol synthesis in real-world domains, including challenging continuous (innite-
state) environments with non-linear dynamics or unknown models. Few exam-
ples include tasks such as walking [6] and grasping [3], control of multi-agent
systems [26,17,21], and control from visual inputs [23].

Yet, current RL approaches are poorly suited for control synthesis for long-
horizon tasks. A critical challenge facing RL is that the desired task is encoded in
the form of a reward. Specifying a long-horizon task in the form of a reward can
be highly non-intuitive; Poor reward specification could hinder the performance
and correctness of the learning algorithm. An appealing alternative is to express
the task in the form of a high-level logical specification, such as a temporal
logic [8,9,19,27], as opposed to a reward function. Logical specifications combine
temporal operators with boolean connectives, enabling more natural encoding
of a large class of desirable properties. Furthermore, logical specifications facil-
itate testing and verification, which could be used to rigorously evaluate the
correctness of the learned policy.

This paper provides a brief overview of recent progress in RL from logical
specifications. Formally, the problem is to learn a policy that optimizes the
probability to satisfy the given specification in an environment modeled by a
Markov Decision Processs (MDP). The defining assumption in RL is that the
transition probabilities of the MDP are unknown. Thus, the policy is learnt via
exploration via repeated sampling of the environment. We briefly summarize
performance of existing algorithms and known theoretical guarantees1.

1 Parts of the paper is based on joint work with Rajeev Alur, Osbert Bastani, and
Kishor Jothimurugan.
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2 Reinforcement Learning from Logical Specifications

Markov Decision Process. A Markov Decision Process (MDP) is a tuple
M = (S,A, η, P ), where S is a set of states, η : S → [0, 1] is the initial state
distribution, A is a finite set of actions, and P : S × A × S → [0, 1, ] is the
transition probability function with Σs′∈SP (s, a, s′) = 1 for all s ∈ S.

An infinite run ζ ∈ (S×A)ω is the sequence ζ = s0, a0, s1, a1 . . . , where s0 ∼ η
and P (si, ai, si+1) > 0 for all i ≥ 0. Similarly, a finite run ζ ∈ (S × A)∗ × S is
a sequence ζ = s0, a0, s1, a1 . . . at−1st. For any run of length at least j, we let
ζi:j = si, ai, . . . aj−1, sj be a sub-sequence of ζ for i, j ∈ N.

Let Runsf denote the set of all finite runs in the MDP. Let D(A) = {∆ :
A → [0, 1] s.t. Σa∈A∆(a) = 1} be the set of all distributions on actions A. Then,
a policy π : Runsf → D(A) maps a history of finite runs to a distribution on
actions. Let Π denote the set of all policies.

Task Specifications. There are different ways in which one can specify the
objective of the learning algorithm. We define a reinforcement learning task to
be a pair (M , ϕ) where M is an MDP and ϕ is a specification for M . In general,
a specification ϕ for M = (S,A, s0, P ) defines a function JM

ϕ : Π(S,A) → R and
the reinforcement learning objective is to compute a policy π that maximizes
JM
ϕ (π). Below, we define RL tasks traditionally using rewards and using logical

specifications.

Disocunted-sum rewards. Traditionally, the specifications is a reward function
that maps transitions in M to real values. The specification consists of a reward
function R : S × A × S → R and a discount factor γ ∈]0, 1[—i.e., ϕ = (R, γ).
The value of a policy π is

JM
ϕ (π) = Eζ∼DM

π

[ ∞∑
i=0

γiR(si, ai, si+1)
]
,

where si and ai denote the state and the action at the ith step of ζ, respectively.
Limit-average instead of discounted-sum is also commonly used.

Logical specifications. Rewards are defined w.r.t. a given set of states S and
actions A, and can only be interpreted over MDPs with the same state and action
spaces. Logical specifications are defined independently of S and A. To achieve
this, a common assumption is that there is a fixed set of propositions Prop, and a
labeling function L : S → 2Prop denoting which propositions hold in a given state.
Given a run ζ = s0a0s1a1 . . ., we let L(ζ) denote the corresponding sequence of
labels L(ζ) = L(s0)L(s1) . . .. A labeled MDP is a tuple M = (S,A, s0, P, L).
Wlog, we only consider labeled MDPs in the rest of the paper.

Formal languages are used to specify qualitative properties about runs of the
system. A logical specification ϕ = L ⊆ (2Prop)ω is a set of “desirable” sequences
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of labels. The value of a policy π is the probability of generating a sequence in
L—i.e.,

JM
ϕ (π) = DM

π

(
{ζ ∈ Runs(S,A) | L(ζ) ∈ L}

)
.

Examples of logical specifications are reachability properties, safety properties,
and temporal logics such as LTL [27], LTL over finite-traces [8], or SpectRL [19].

Reinforcement Learning. Given an RL task (M,ϕ), assuming the transition
probabilities of M are unknown, the problem of RL is to generate a policy

π∗ = argmax
π∈Π

JM
ϕ (π).

3 Algorithms

Recently, a myriad of algorithms have been proposed for learning from logi-
cal specifications [1,4,5,7,10,12,16,15,14,34,32,18,24,31]. These methods can be
categorized into two broad classes, as described below:

Specification to Rewards. Many early works on RL from logical specifications
took a natural approach to solve the problem. Here, the goal is to automatically
synthesize rewards from a given formal specification and then to use a traditional
RL algorithm to learn an optimal policy from the synthesized rewards. The
simplest reward function would be to assign a positive reward to executions that
satisfy the specification and a zero reward to the rest. This naive reward function
results in poor performance of the learning algorithm due to the sparsity of
rewards. Thus, most algorithms are modified to provide informative intermediate
rewards that also guide the search of an optimal policy. Few methods include
policy-preserving reward shaping and rewards based on distance metrics.

Mostly, these algorithms demonstrate merit in learning stateful policies. For
example, if the task was to learn to return to the initial state after visiting a
goal, then the movement of the agent along the path connecting the initial state
to the goal state depends on whether the goal has been visited or not. Since
most specification-to-reward conversion schemes are stateful, such information
automatically gets encoded in the learnt policy. By and large, these methods
have shown to learn high-quality policies in finite-state environments, and for
simple tasks in infinite-state environments.

Compositional Algorithm. These methods build on early progress of näıve ap-
proach of converting specifications to rewards with the objective to scale to
complex long-horizon specifications in complex infinite-state environments. An
example of a task that proves to be too complex for early works is illustrated in
Figure 1. Specification-to-reward based approaches fail on such examples due to
the inherent greedy nature of RL algorithms. In this example, the algorithms
learn to reach S2 instead of S1 as the former is easier to learn due to the absence
of any obstacle. However, this is not fruitful towards satisfaction of the original
specification as there is no direct path from S2 to S3.
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Fig. 1: Left: The 9-rooms environment, with initial region S0 in the bottom-
left, an obstacle O in the middle-left, and three subgoal regions S1, S2, S3 in
the remaining corners. Middle: A user-provided specification ϕ. Right: Learning
curves for compositional approach DiRL [20] and some baselines; x-axis is number
of steps and y-axis is probability of achieving ϕ.

Compositional approaches for learning from specifications leverage the struc-
ture of a given specification to first decompose the original task into several
simpler and easier-to-learn tasks and then compose the policies learnt for these
subtasks to obtain a policy that maximizes satisfaction of the original specifi-
cation. This way these algorithms combine planning on the high-specification
with learning on low-level tasks to scale to large and complex specifications. The
structure of the specification could be exploited further for significant improve-
ments in the performance of learning algorithms along the metrics of scalability
in specification, sample complexity, and quality of solutions.

4 Theoretical guarantees

We present the theoretical foundations of RL from logical specifications. The
formal guarantees associated with the specification-to-reward approach of learn-
ing algorithms have been studied [11,13,28]. We will discuss PAC learning in the
context of RL from logical specifications. We then discuss recent results [2,33]
showing that PAC algorithms do not exist for Linear Temporal Logic (LTL)
specifications and present a high-level overview of a proof.

For this section, we assume an MDP is has finitely many states S and actions
A, and there is a unique initial state s0, i.e., η(s0) = 1 and η(s) = 0 for all
s ∈ S \ {s0}. A learning algorithm A can be thought of as an iterative process
that in each iteration (i) either resets the MDP state to an initial state or takes a
step inM , and (ii) outputs its current estimate of an optimal policy π. A learning
algorithm A induces a random sequence of output policies {πn}∞n=1 where πn is
the policy output in the nth iteration.

Let J ∗(M,ϕ) = supπ J
M
ϕ (π) denote the maximum value of JM

ϕ . We let
Πopt(M,ϕ) denote the set of all optimal policies inM w.r.t. ϕ—i.e.,Πopt(M,ϕ) =
{π|JM

ϕ (π) = J ∗(M,ϕ)}. In many cases, it is sufficient to compute an ε-optimal

policy π̃ with JM
ϕ (π̃) ≥ J ∗(M,ϕ) − ε; we let Πε

opt(M,ϕ) denote the set of all
ε-optimal policies in M w.r.t. ϕ.
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Definition 1. A learning algorithm A is said to be PAC-MDP for a class of
specifications C if, there is a function h such that for any p > 0, ε > 0, and any
RL task (M,ϕ) with M = (S,A, s0, P ) and ϕ ∈ C, taking N = h(|S|, |A|, |ϕ|, 1

p ,
1
ε ),

with probability at least 1− p, we have∣∣∣{n | πn /∈ Πε
opt(M,ϕ)

}∣∣∣ ≤ N.

We say a PAC-MDP algorithm is efficient if the sample complexity function
h is polynomial in |S|, |A|, 1

p and 1
ε . There are efficient PAC-MDP algorithms

for discounted-sum rewards [22,29]. Unfortunately, we show that that it is not
possible to obtain PAC-MDP algorithms for safety specifications.

Theorem 1. [2] There does not exist a PAC-MDP algorithm for the class of
safety specifications.

Intuitively, Theorem 1 follows from that fact that, when learning from sim-
ulation, it is highly likely that the learning algorithm will encounter identical
transitions when the underlying MDP is modified slightly. This makes it impos-
sible to infer an ε-optimal policy using a number of samples that is independent
of the transition probabilities since safety specifications are not robust [25]. For
a full proof, see [2].
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