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Abstract. Existing solution approaches for problems in quantitative analysis su�er from two challenges that
adversely impact their theoretical understanding, and large-scale applicability due to limitations on scalabil-
ity. These are the lack of generalizability, and separation-of-techniques. Lack of generalizability refers to the
issue that solution approaches are often specialized to the underlying cost model that evaluates the quantita-
tive property. Di�erent cost models deploy such disparate algorithms that there is no transfer of knowledge
from one cost model to another. Separation-of-techniques refers to the inherent dichotomy in solving prob-
lems in quantitative analysis. Most algorithms comprise of two phases: A structural phase, which reasons
about the structure of the quantitative system(s) using techniques from automata or graphs; and a numerical
phase, which reasons about the quantitative dimension/cost model using numerical methods. The techniques
used in both phases are so unlike each other that they are di�cult to combine, forcing the phases to be
performed sequentially, thereby impacting scalability.
This abstract summarizes my thesis work [2], which contributes towards a novel framework that addresses
the aforementioned challenges. The introduced framework, called comparator automata or comparators in
short, builds on automata-theoretic foundations to generalize across a variety of cost models. The crux of
comparators is that they enable automata-based methods in the numerical phase, hence eradicating the de-
pendence on numerical methods. In doing so, comparators are able to integrate the structural and numerical
phases. On the theoretical front, we demonstrate that comparator-based solutions have the advantage of
generalizable results, and yield complexity-theoretic improvements over a range of problems in quantitative
analysis. On the practical front, we demonstrate through empirical analysis that comparator-based solutions
render more e�cient, scalable, and robust performance, and hold the ability to integrate quantitative with
qualitative objectives.

Many classic questions in formal methods can be seen as involving comparisons between
di�erent system runs or inputs. For instance, the classical model checking problem of verifying
if a system S satis�es a linear-time temporal speci�cation P [11]. Traditionally, this problem
is phrased language-theoretically: S and P are interpreted as sets of (in�nite) words, and S
is determined to satisfy P if S ⊆ P . The problem, however, can also be framed in terms
of a comparison between words in S and P . Suppose a word w is assigned a weight of 1 if
it belongs to the language of the system or property, and 0 otherwise. Then determining if
S ⊆ P amounts to checking whether the weight of every word in S is less than or equal to
its weight in P [1]. The ubiquity of comparisons becomes more pronounced in quantitative
analysis: Firstly because every system execution is assigned a real-valued cost. W.l.o.g, we can
assume that the cost model is an aggregate function f : Zω → <. The cost of an execution
is related to the aggregate function f applied to the weight-sequence corresponding to the
execution; Secondly, because problems in quantitative analysis reduce to comparing the cost
of executions to a constant value (such as in quantitative games), or more generally to the
cost of another execution (as in quantitative inclusion).

Keeping comparisons at the center, we introduce a language-theoretic/automata-theoretic
formulation of the comparison between weighted sequences. We introduce comparator au-
tomata (comparators, in short), a class of automata that read pairs of in�nite weight sequences
synchronously and compare their aggregate values in an online manner [5]. Formally, a com-
parator automata for aggregate function f , relation R, and upper bound µ > 0 is an automa-
ton that accepts a pair (A,B) ∈ (Σ × Σ)ω of sequences of bounded integers, where Σ =
{−µ, µ−1, . . . , µ}, i� f(A) R f(B), where R ∈ {>,<,≥,≤, 6==} is an inequality or equality
relation. We say a comparator is ω-regular if it is �nite-state and accepts by the Büchi condi-
tion. We show that for several aggregation functions such as limsup and liminf, discounted-
sum (DS) with integer discount factors, ω-regular aggregate functions [10], the comparator
automata is a Büchi automaton. While for several other functions, such as limit-average and
DS with non-integer discount factors, the comparator cannot be ω-regular.

The �rst bene�t of comparators is that one can design generalizable solutions to a vari-
ety of problems in quantitative analysis for all aggregate functions that permit an ω-regular



comparator. This is in contrast to existing approaches where solutions and results are very
speci�c to the cost-models. For instance, consider the problem of quantitative inclusion for
aggregate function f , called f-inclusion in short. From prior work, even complexity-theoretic
results are diverse. While quantiative inclusion is PSPACE-hard, there is ample variance in
upper bounds. Quantitative inclusion is PSPACE-complete under limsup/liminf [9] and EXP-
TIME for DS with integer discount factors [8,9]. Instead, with comparators, we can generalize
to show that for all aggregate functions with an ω-regular comparators, quantitative inclusion
is PSPACE-complete. Thus these generalization solutions can also sometimes even result in
tighter complexity-theoretic bounds (eg. DS inclusion for integer discount-factors). Similarly,
we design generalize solutions for solving quantitative games with perfect and imperfect in-
formation. What enables these generalizable results is the fact that since Büchi automata are
closed under all set-theoretic operations, ω-regular comparators can easily be operated on in
the generic algorithms that we design.

Another bene�t of comparators has to do with the separation-of-techniques challenge of
quantitative analysis. Separation-of-techniques refers to the inherent dichotomy in existing al-
gorithms for problems in quantitative analysis. Most algorithms comprise two phases. In the
�rst phase, called the structural analysis phase, the algorithm reasons about the structure of
the quantitative system(s) using techniques from automata or graphs. In the second phase,
called the numerical analysis phase, the algorithm reasons about the quantitative dimension/-
cost model using numerical methods. For eg. to solving DS inclusion with integer discount
factors consists of two phases: a Determination phase where a non-deterministic system is
determinized (the structural phase) followed by linear programming (numerical phase). The
techniques used in both these phases are so unlike each other that they cannot be solved in
tandem. Hence the phases have to be performed sequentially, hence a�ecting their scalability.

The advantage of our automata-based formulation of comparators in this aspect is that
comparators reduce the numerical problem of comparison of aggregation of weight sequences
into one of membership in an automaton. This way, enabling both phases, the structural
phase, and numerical phase, of quantitative analysis to be performed using automata-based
techniques. Subsequently, creating an opportunity to design integrated methods as opposed
to separation-of-techniques methods for problems in quantitative analysis. The generalizable
algorithms that we design when the aggregate function permits ω-regular comparators are
based on reducing the problems in quantitative analysis to those in qualitative analysis. In
particular, quantitative inclusion is reduced to language inclusion, and quantitative games un-
der perfect and imperfect information are both reduced to solving parity games.

Apart from the theoretical development of the comparator-framework, my thesis also in-
vestigates the practical considerations of comparator-based algorithms. For this, we investi-
gate problems with DS aggregation. We �rst observe that DS comparators have an even more
specialized structure than being ω-regular - They are safety or co-safety automata [7]. We
can leverage this additional property to design theoretically and practically superior algo-
rithms for DS inclusion with integer discount factors [4,7], and quantitative games with DS
with perfect information [3]. We are also able to design the �rst pragmatic anytime algorithm
for DS inclusion with a non-integer discount factor, a problem for which even decidability is
currently open [6].

In summary, the progress of comparator-based approaches has bridged quantitative rea-
soning to qualitative reasoning. The use of language-theoretic properties such as safety/co-
safety was unheard of in the context of quantitative analysis. But now with comparators, we
have opened these avenues. While we have demonstrated the bene�ts of comparators on a few
problems, we believe its reach can cast a wide web, and encourage us to re-think algorithms
in quantitative analysis.
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