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Abstract

Reinforcement Learning (RL) from logical specifications is a promising approach
to learning control policies for complex long-horizon tasks. While these algorithms
showcase remarkable scalability and efficiency in learning, a persistent hurdle
lies in their limited ability to generalize the policies they generate. In this work,
we present an inductive framework to improve policy generalization from logical
specifications. We observe that logical specifications can be used to define a class of
inductive tasks known as repeated tasks. These are tasks with similar overarching
goals but differing inductively in low-level predicates and distributions. Hence,
policies for repeated tasks should also be inductive. To this end, we present an
approach that learns policies for unseen repeated tasks by training on few repeated
tasks only. Our approach is evaluated on long-horizon tasks in continuous state
and action spaces, showing promising results in handling long-horizon tasks with
improved one-shot generalization.

1 Introduction

The problem of Reinforcement Learning (RL) is to generate a policy for a given task in an unknown
environment by continuously interacting with the environment Sutton & Barto (2018). When
combined with neural-networks (NN), RL has made remarkable strides in control synthesis in
real-world domains, including challenging continuous (innite-state) environments with non-linear
dynamics or unknown models. Few examples include tasks such as walking Collins et al. (2005) and
grasping Andrychowicz et al. (2020), control of multi-agent systems Lowe et al. (2017); Inala et al.
(2021); Jothimurugan et al. (2022), and control from visual inputs Levine et al. (2016).

A key challenge facing RL is the difficulty in specifying the goal. Specifying rewards for complex,
long-horizon tasks, can be highly non-intutive; Poor reward functions can make it hard for the RL
algorithm to achieve the goal; e.g., it can result in reward hacking Amodei et al. (2016), where the
agent learns to optimize rewards without achieving the goal.

An appealing alternative is to express the task in the form of a high-level logical specification, such as
a temporal logic De Giacomo & Vardi (2013); Donzé (2013); Pnueli (1977), as opposed to a reward
function. Logical specifications combine temporal operators with boolean connectives, enabling
more natural encoding of a large class of desirable properties. Prior works have demonstrated the
benefit of logical specifications scaling RL to long-horizon tasks Icarte et al. (2018); Jothimurugan
et al. (2021); Li et al. (2017). Their theoretical implications have also been studied extensively Alur
et al. (2022); Hahn et al. (2019); Yang et al. (2021). Furthermore, logical specifications facilitate
testing and verification, which could be used to rigorously evaluate the correctness of the learned
policy Ivanov et al. (2021). Details can be found here Alur et al. (2023).
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Figure 1: Repeated Task Ri navigates from initial location si to goal location ti in 2D Cartesian Plane
for i ∈ [20]. Initial and goal location shift to the right by 0.5 x-units each. Generalizable policy is
trained on Rtrain and tested on Runseen.

This work-in-progress demonstrates an advantage of using logical specifications in learning gen-
eralizable policies. A critical shortcoming of RL is that the learnt policies do not generalize to
environments or tasks other than the specific environment and task the policy was trained for. Our
central insight is that logical specifications offer an inherent inductive structure that can be leveraged
to learn generalizable policies for a large class of tasks.

Motivating Example Consider, a simulation of a car (point agent) in a 2D Cartesian plane (Figure 1).
Our goal is to learn a policy to navigate the car from a given starting point s to a given target
location g without encountering obstacles on its way. Many RL approaches, including learning from
specification, can easily learn such a policy. The issue, however, is that the learned policy learns to
navigate from initial position s0 to goal position t0 but will falter when trying to navigate from initial
position s0 + ε to goal position g0 + ε for ε ̸= 0. More generally, the policy will struggle to operate
on initial and goal positions other than si and gi, respectively.

We observe that these tasks share an identical overarching structure and differ only in the specifics of
the location of the initial and goal positions. In Figure 1, these refer to the tasks to navigate from si to
ti where the i+1-th locations are shifted slightly to the right of the i-th location, for all i ≥ 0. Hence,
our goal should be to learn a generalizable policy for all i ≥ 0. This means that despite variations in
initial and goal positions during training, the policy should be adaptable to novel starting and goal
points, maintaining a consistent underlying strategy.

To this end, we define repeated tasks to be a class of tasks that share the same overarching structure
(as defined by a logical formula) and differ only in the specifics of the predicates of the formula such
that the i+ 1-th task is inductively defined on the i-th task. Consequently, we define their policies
inductively, i.e. the i+1-th policy is obtained from the i-th policy. Finally, we present an algorithmic
approach that can learn these inductive policies, hence offering generalizability to a large class of
unseen tasks.

2 Repeated Task

We define repeated tasks as a set of RL tasks that demonstrate the same overarching structure and only
differ in the instantiation of their specification predicates and/or MDP initial distribution. We assume
that repeated tasks build inductively, i.e. the (i+ 1)-th task builds on the first i-th task. Formally:
Definition 2.1. A repeated task is given by the tuple R = (R0, update_pred, update_init) where R0

is the base task, the predicate update function update_pred : P 7→ P defines inductive updates to
predicates, and the initial distribution update function update_init : D(S) 7→ D(S) defines inductive
updates to the initial state distribution. The, the tasks in R are given by:

R0 = (ϕ(P0), η0) and Ri+1 = (ϕ(Pi+1), ηi+1) for i > 0
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where
Pi+1 = {update_pred(p) | p ∈ Pi} and ηi+1(s) = ηi(update_init(s))

where ϕ(P0) is a SPECTRL specification defined over the predicates P0 and η0 is the initial state
distribution for the base task.

In Figure 1, the base task is to navigate from the initial states of the environment to a location goal
= (x0, y0) while avoiding a fixed obstacle positioned at the support of the predicate obs. In each
repeated task the location gtop moves to the right by 0.5 units and the initial state distribution shifts
to the right by 0.5 units.

We use the specification language SPECTRL to specify tasks ϕ (Appendix A.1). This repeated task is
formalized as such: Let the base predicates be given by P0 = {reach(goal), avoid(obs))}. Then
the base specification is given by

ϕ(P0) = achieve (reach(goal)) ensuring (avoid(obs)).
The predicate update function is given by

update_pred(reach(s)) = reach(s+ (0.5, 0)), update_pred(avoid(s)) = avoid(s)
and the initial distribution function is given by update_init(η(s)) = η(s+ (0.5, 0)).

3 Generalization of Repeated Tasks

The problem of RL from logical specifications is to learn a policy that maximizes the probability of
satisfaction of a given logical specification. Details have been deferred to the Appendix A.2.

We formulate the generalization problem to capture the intuition that if an RL agent learns to satisfy
a few tasks from a repeated task, then the agent should be able to extrapolate to accomplish new tasks
from the given repeated task. In addition, since the goal is to learn policies for tasks that are defined
inductively, we assume that their policies are also defined inductively, i.e. the policy for (i+ 1)-th
builds on the i-th task.

Formally, given repeated task R = (R0, update_pred, update_init), letting πi : S → A denote the
policy satisfying the task Ri, we define the policy πi+1 for i > 0 as follows:

πi+1 = κ ◦ πi

where the kappa policy κ = (κ0, . . . κm−1) is an m-tuple consisting of coefficient functions κk :
S → R|A| for k ∈ [m− 1]. We call m = |κ| the degree of the kappa policy. ◦ could be any template
or function to generate a inductive update in the policy.

An advantage of describing policies inductively in a repeated task R is that one can generate policies
for all tasks in R if the base policy π0 and the kappa policy κ are known. To this end, we define the
problem of learning generalizable policies for repeated tasks in terms of learning the base policy and
the kappa policy from a set of training tasks from R. Our choice to learn the kappa policy in lieu
of separate policies for all tasks in the training set renders the ability to extrapolate (generalize) to
unseen tasks.
Problem Statement 3.1 (Generalizable RL for Repeated Tasks). Given a MDP with unknown
transition probabilities, repeated task R and a set of training tasks Train such that the base task
R0 ∈ Train, the problem of learning generalizable policies for repeated tasks is to learn a base policy
π0 and a kappa policy κ∗ such that

π0 ∈ argmax
π

Pr
ζ∼Dπ

[ζ |= ϕ0, η0]

and
κ∗ ∈ argmax

κ

1

|Train \ {R0}|
·

∑
Rj∈Train\{R0}

Pr
ζ∼Dπj

[ζ |= ϕj , ηj ]

where the policy πj is derived from κ and the base policy π0 using the inductive policy template.

In other words, (a). the base policy π0 is the optimal policy for the base task R0 and (b). the kappa
policy simultaneously optimizes the policy πj for all tasks Rj ∈ Train \ {R0}.

Generally, the template for inductive policies could be πi+1 = f(πi, κ). Our generalizable policy
framework of learning the kappa policy as opposed to directly learning the policies for training tasks
would extend to these more general templates.
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4 Empirical Evaluation 1

We summarize our empirical evaluation of our generalizable algorithm that learns a base policy and
a kappa policy, given a template. Our experiments are designed to (a). evaluate the ability of the
learned policy to (one-shot) generalize to unseen instances of the repeated task on long-horizon tasks,
and (b). evaluate the impact of the template on generalizability.

We present a case study on a continuous 2D Cartesian Plane consisting of a car (RL agent) that is
free to move in the plane. In this environment, both the state space and action space are continuous in
nature. States (x, y) ∈ R× R refer to points in the cartesian plane and actions (c, d) ∈ [0, 1]× [0, 1]
refer to a small displacement in the 2D plane. From state (x, y) on action (c, d) the environment
progresses to (x+c, y+d). We use pre-defined predicate avoidto define our tasks in the environment.
Predicate reachis interpreted as reaching the coordinates of the specified point. Predicate reachholds
true when point s is near the point goal w.r.t euclidean norm ∥.∥2 i.e., reach(goal)(s) = (∥s −
goal∥2 < ε1) for a given error margin ε > 0.

4.1 Repeated Task

The overarching objective is to navigate from an initial location to n goal locations along a straight
line, for a given n ∈ N. With each induction on the task, the straight line shifts to the right by 0.5
units. I.e. the initial state distribution and all the goal locations shift to the right.

Formally, we denote the repeated task with n-goals by n-goals. Letting gi denote the i-th goal on the
base specification for n-goals (for 0 < i ≤ n), the base specification is given by

achieve (reach(g1)); . . . ; achieve (reach(gn)).

The predicate update function and the initial state distribution function are given by

update_pred(reach(g)) = reach(g + (0.5, 0)) and update_init(η(s)) = η(s+ (0.5, 0)).

Note that the motivating example from Figure 1 illustrates 1-goals.

4.2 Experimental Setup

We evaluate our algorithm across the five repeated tasks 1-goals, . . . , 5-goals corresponding to one
through five reachability goals along a straight line, respectively. Each repeated task is trained on five
training tasks, excluding the base task. In each task, we train to learn the inductive policy template.
We evaluate our algorithm on (a) the amount of generalization and (b) the complexity of the template.

For each task, we compute the degree of generalization against the success threshold of p ∈
{0.5, · · · , 0.9} and the number of training episodes (iterations). The success threshold for repeated
task n-goals for probability p indicates the number of unseen tasks for which the learned policy has a
success probability greater than or equal to p. We also compute the degree of generalization as the
number of training episodes (iterations) increases. For this, we set the success probability threshold
to 0.85. Finally, we compute the generalization percentage as |Rtest,success|/|Rtrain| during the most
successful number of iterations.

To analyze the complexity of the template, we perform experiments with two templates, one of degree
one and the other of degree two. We also evaluate the degree of generalization of the state-of-the-art
tool to learn from specifications DIRL.

4.3 Observations

Generalizability. Table 1 presents our empirical on the degree of generalization. Our analysis
reveals a notable trend of robust generalizability: our model reliably conforms to a wide range
of unseen tasks, exhibiting an average generalization rate of 166.66% (the average of the final
column scores from Table 1). Figure 2a shows the trajectories of the car in the 3-goals repeated
task. It illustrates both the Rtrain trajectories (in blue) and the Runseen trajectories (in red). This
figure demonstrates that the agent successfully reaches all of its goals, even in the Runseen tasks.

1We defer algorithm details to a longer version of this work.
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Repeated Task Success Threshold Iteration (No. of episodes) % Gen.

|Rtrain| = 5 0.5 0.6 0.7 0.8 0.9 200 400 600 800 1000 (Best Iter.)

1-goals 22 20 15 14 13 10 11 14 13 14 280

2-goals 20 19 14 13 13 8 10 11 11 13 260

3-goals 16 14 10 10 9 6 7 9 9 10 200

4-goals 14 12 8 8 7 6 6 7 8 8 160

5-goals 14 12 7 7 7 5 6 7 7 7 140

Table 1: Generalization Matrix. Success threshold p for a task indicates the number of unseen tasks
that demonstrate ≥ p success probability. The number in boldface under Iterations represents the
best generalization for the specification (with succes threshold as 0.85).

(a) Selected trajectories of the car on 3-goals (other
test trajectories are not shown to minimize clutter)

(b) Generalization between DIRL and two tem-
plates of GenRL (with succes threshold as 0.85).

Figure 2

Significantly, the data from the table underscores that our model maintains an admirable generalization
capability, even under the conditions of high reachability success thresholds. However, it’s worth
mentioning that there’s a noticeable performance plateau upon reaching 600 iterations. We aim to
delve into the cause of this stagnation to enhance the generalization outcomes beyond this point.

Template Analysis. From Figure 2b, it becomes evident that the baseline DIRL struggles with
generalization. On the other hand, when using the template of degree 2, the generalization is
commendable. In contrast, while using the template of degree 1 does show some capacity to
generalize, its performance is weaker compared to its counterpart. This observation underscores a key
insight: enhancing the complexity of our template can lead to notable improvements in generalization
capabilities.

5 Concluding remarks

This work presents an inductive framework to learn generalizable policies for inductively defined
repeated tasks. An empirical evaluation of a preliminary algorithm to learn these policies demonstrates
the promise of our framework in learning generalizable policies for long-horizon tasks. In the future,
we will evaluate our algorithm on more complex specifications in more challenging environments.
We will also examine the impact of templates on generalization and seek to design the template based
on the task and environment.
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A Appendix

A.1 Specification Language

We consider the specification language SPECTRL for specifying RL tasks Jothimurugan et al. (2019).
A specification ϕ in this language is a logical formula over trajectories that indicates whether a
given trajectory ζ successfully accomplishes the desired task. Formally, a SPECTRL specification
is defined over a set of atomic predicates P0, where every p ∈ P0 is associated with a function
JpK : S → B = {true, false}; we say a state s satisfies p (denoted s |= p) if and only if
JpK(s) = true. Finally, the syntax of SPECTRL is given by 2

ϕ ::= achieve b | ϕ1 ensuring b | ϕ1;ϕ2 | ϕ1 or ϕ2,

where b ∈ P . Each specification ϕ corresponds to a function JϕK : Z → B, and we say ζ ∈ Z
satisfies ϕ (denoted ζ |= ϕ) if and only if JϕK(ζ) = true. Letting ζ be a finite trajectory of length t,
this function is defined by

ζ |= achieve b if ∃ i ≤ t, si |= b

ζ |= ϕ ensuring b if ζ |= ϕ and ∀ i ≤ t, si |= b

ζ |= ϕ1;ϕ2 if ∃ i < t, ζ0:i |= ϕ1 and ζi+1:t |= ϕ2

ζ |= ϕ1 or ϕ2 if ζ |= ϕ1 or ζ |= ϕ2.

Intuitively, the first clause means that the trajectory should eventually reach a state that satisfies the
predicate b. The second clause says that the trajectory should satisfy specification ϕ while always
staying in states that satisfy b. The third clause says that the trajectory should sequentially satisfy ϕ1

followed by ϕ2. The fourth clause means that the trajectory should satisfy either ϕ1 or ϕ2.

A.2 Reinforcement Learning from Specifications

The problem of RL from logical specifications is to learn a policy in an unknown environment that
maximizes the probability of satisfying a given logical specification describing a desired task.

Formally, the environment in RL is given by a Markov decision process (MDP) M = (S,A, P, η) with
continuous states S ⊆ Rn, continuous actions A ⊆ Rm, transitions P (s, a, s′) = p(s′ | s, a) ∈ R≥0

(i.e., the probability density of transitioning from state s to state s′ upon taking action a), and initial
states η : S → R≥0 (i.e., η(s) is the probability density of the initial state being s). A trajectory ζ ∈ Z
is either an infinite sequence ζ = s0

a0−→ s1
a1−→ · · · or a finite sequence ζ = s0

a0−→ · · · at−1−−−→ st
where si ∈ S and ai ∈ A. A subtrajectory of ζ is a subsequence ζℓ:k = sℓ

aℓ−→ · · · ak−1−−−→ sk. We let
Zf denote the set of finite trajectories. A (deterministic) policy π : Zf → A maps a finite trajectory
to a fixed action. Given π, we can sample a trajectory by sampling an initial state s0 ∼ η(·), and then
iteratively taking the action ai = π(ζ0:i) and sampling a next state si+1 ∼ p(· | si, ai).

2Here, achieve and ensuring correspond to the “eventually” and “always” operators in temporal logic.
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