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Abstract. In the Adapter Design Pattern, a programmer implements
a Target interface by constructing an Adapter that accesses an existing
Adaptee code. In this work, we present a reactive synthesis interpretation
to the adapter design pattern, wherein an algorithm takes an Adaptee
and a Target transducers, and the aim is to synthesize an Adapter trans-
ducer that, when composed with the Adaptee, generates a behavior that
is equivalent to the behavior of the Target. One use of such an algorithm
is to synthesize controllers that achieve similar goals on different hard-
ware platforms. While this problem can be solved with existing synthesis
algorithms, current state-of-the-art tools fail to scale. To cope with the
computational complexity of the problem, we introduce a special form of
specification format, called Separated GR(k), which can be solved with
a scalable synthesis algorithm but still allows for a large set of realistic
specifications. We solve the realizability and the synthesis problems for
Separated GR(k), and show how to exploit the separated nature of our
specification to construct better algorithms, in terms of time complexity,
than known algorithms for GR(k) synthesis. We then describe a tool,
called SGR(k), that we have implemented based on the above approach
and show, by experimental evaluation, how our tool outperforms current
state-of-the-art tools on various benchmarks and test-cases.

1 Introduction

Inspired by the well known adapter design pattern [18], we study the use of
reactive synthesis for generating adapters that translate inputs meant for a tar-
get transducer to inputs of an adaptee transducer. Consider, as one motivating
example, the practice of adding code to an operating system that mitigates the
risk posed by newly discovered hardware vulnerabilities like Spectre and Melt-
down [23, 26]. While the discovery of such vulnerabilities puts constraints on how
the hardware can be used, the patch of the operating system (called adapter in
this paper) takes upon itself to take care of running all applications without
change [25]. It does so by allowing applications of the existing interface, while
adapting their operation in way that ensures that the system is not exposed to
the new threat.
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Formally, we propose the following synthesis problem: given two finite-state
transducers called Target and Adaptee, synthesize a finite-state transducer called
Adapter such that

Adaptee ◦Adapter h Target .

The symbol ◦ stands for standard transducer composition and the symbol h
stands for an equivalence relation, a generalization of sequential equality, which
we explain below. In words, we want an Adapter that stands between an Adaptee
and its inputs and guarantees, such that the composition Adaptee ◦ Adapter is
equivalent to Target . In the vulnerability patching example, Adaptee is a model
of the constrained hardware and Target is a model of the hardware as used before
the discovery of the vulnerability, without the new constraints. The Adapter that
we generate models the patch that mediates between the vulnerable hardware
and applications that are not aware of the vulnerability.

In our setting, an input to the synthesis algorithm is the equivalence relation
along with the specification of the adaptee and of the target. While the problem
of synthesizing an adapter such that Adaptee ◦ Adapter is sequentially equal to
Target may be useful in some cases [32], we study here a more general prob-
lem. This is called for by applications such as the vulnerability covering patches
described above. Specifically, we allow our users to specify an equivalence re-
lation between Adaptee ◦ Adapter and Target that is not necessarily sequential
equality. In this paper, we propose to use ω-regular properties [20] for specifying
this equivalence relation, as follows. We assume, without loss of generality, that
the outputs of both the Target and the Adaptee are assignments to disjoint sets
of atomic propositions. We then consider sequences of pairs of such assignments
that correspond to zipped runs of Adaptee ◦Adapter and of Target over the same
input. Having this set of sequences in mind, the user specifies a set of temporal
properties using an ω-regular formalism such as LTL or Büchi automata. The
transducer Adaptee ◦Adapter is considered equivalent to Target if all the prop-
erties that the user specified are satisfied for each sequence in the set [19]. Note
that the equivalence relation can be very different than sequential equality, it
can, for example, say that Adaptee ◦Adapter must be, in a way, a “mirror image”
of Target , as demonstrated by the cleaning robots example in Section 4.1, where
Target is a robot that cleans some rooms and Adaptee ◦Adapter is a robot that
clean all the rooms that Target did not clean.

The solution that we propose in this paper consists of two phases: we first
transform the transducers to transition systems and arrive at a game structure
that is more amenable for game-based techniques. Then we make use of the
specific form of the resulting game and some simplifying assumptions about the
form of the equivalence properties to solve the game efficiently. The game struc-
tures that we analyze consist of pairs of transition systems called Input and
Output , accompanied by a set of ω-regular properties that specify equivalence
relation between the two, as described above. The game that we solve is, then,
to find a controller that reads the assignments to the variables of the Input and
produces a valid sequence of assignments to the variables of the Output such
that all the properties are satisfied. The translation of the transducers to this
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game structure is rather direct, as elaborated in Section 4. The Input transi-
tion system is generated from the Target transducer and the Output transition
system is generated from the Adaptee transducer. This is because we want the
Adapter , which we generate from the controller as described below, to consider
the behavior of the Target and to translate it to a command that generates an
equivalent behaviour of Adaptee. Once we find a controller that solves the game,
we can transform it to an Adapter as we detail in Section 4.

The synthesis problem that we defined so far is as hard computationally as
general LTL synthesis and is thus double exponential in the worst case [37]. To
cope with this difficulty, we propose to use a well known fragment of LTL called
GR(k). GR(k) generalizes the GR(1) subset of LTL [9], a practical fragment
of LTL for which a feasible reactive synthesis algorithm exists (see, e.g., [8, 28,
33]). Furthermore, GR(k) formulas are known to be highly expressive, as they
can encode most commonly appearing LTL industrial patterns [15, 29, 30] and
DBA properties (see related works for details). In addition to using GR(k),
since the Input and Output in our model are separated transition systems, with
separated sets of atomic propositions, we focus on properties that separate input
and output variables. That is, our specification has the form

∧k
i=1(φi → ψi),

where the φi and ψi are conjunctions of LTL GF (Globally in the Future) formulas
over Input variables only and Output variables only respectively. We call this
model Separated GR(k). We show through several case-studies that this fragment
of LTL suffices to specify a range of useful equivalence relations.

We study the problems of realizability and synthesis on Separated GR(k)
game. For that, we first consider a sub-problem of solving a weak Büchi game.
Then we identify and make use of a property of separated games that we call
delay property : the system can delay its response to the environment indefinitely
as long as it remains in the same connected component of the game graph.
This allows us to decide the realizability of Separated GR(k) in O(|ϕ| + N)
symbolic operations, and to synthesize a controller for a realizable specification
in O(|ϕ|N) symbolic operations, where ϕ is the Separated GR(k) specification,
and N is the size of the state-space. Thus, Separated GR(k) games are easier to
solve that solving GR(k) games which require O(Nk+1k!) operations [35]. This
demonstrates the efficiency of our framework, since |ϕ| tends to be smaller than
N and in most practical cases, |ϕ| ∈ O(log(N)).

The benefits of the complexity-theoretic improvement are reflected in empiri-
cal evaluations on our case studies of separated GR(k) formulas. We demonstrate
that while separated GR(k) formulas are challenging for state-of-the-art synthe-
sis tools, a symbolic BDD-based implementation of our algorithm solves them
scalably and efficiently.

The rest of the paper is organized as follows: Section 2 introduces necessary
preliminaries. Separated GR(k) games are introduced and formulated in Sec-
tion 3. In Section 4 we describe how to use Separated GR(k) games synthesis to
generate the adapter transducer, and introduce several use-cases. Next, we turn
to solving separated GR(k) games. An overview of our solution approach and
a necessary property for correctness of algorithm, called the delay property, is
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given in Section 5. A complete symbolic algorithm is presented in Section 6. An
empirical evaluation on case-studies is presented in Section 7. Finally, in Sec-
tion 8 and Section 9 respectively, we give related work and conclude. Detailed
proofs appear in the full version of the paper [3].

2 Preliminaries

General Definitions. Given a set of Boolean variables V, a state over V is
an assignment s to the variables in V. We describe s as the subset of V that
is assigned True in s. The set of primed variables of V is V ′ = {v′ | v ∈ V}.
Then s′ = {v′ | v ∈ s} is the primed state s′ over V ′. An assertion over V is
a Boolean formula over variables V. A state s satisfies an assertion ρ over the
same variables, denoted s |= ρ, if ρ evaluates to True by assigning true to the
elements of s. We define the projection of a state s on a subset U ⊆ V as denoted
by s|U = s ∩ U . We extend the notion of projection to a set of states S ⊆ 2V by
defining S|U = {s|U | s ∈ S}.

Our specification is a special form of Linear Temporal Logic (LTL). LTL [36]
extends propositional logic with infinite-horizon temporal operators. The syntax
of an LTL formula over a finite set of Boolean variables V is defined as follows:
ϕ ::= v ∈ V | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | Fϕ | Gϕ. Here X (Next), U (Until),
F (Eventually), G (Always) are temporal operators. The semantics of LTL can
be found in [5, Chapter 5].

We model the adapters as transducers. A transducer is a deterministic finite-
state machine with no accepting states, but with additional output alphabet and
an additional function from the set of states to the output alphabet. A formal
definition of a transducer is not required for this paper.

The algorithms developed in this paper are symbolic, i.e. manipulate implicit
representations of sets of states. To this end, we use Binary Decision Diagrams
(BDDs) [10] to represent assertions. For a BDD B and sets of variables V1, · · · Vn,
we write B(V1, . . . ,Vn) to denote that B represents an assertion over V1∪· · ·∪Vn.
For a state s over V, we write s |= B(V) to denote that the assertion that B
represents is satisfied by the state s. BDDs support several symbolic operations:
conjunction (∨), disjunction (∧), negation (¬), and extraction of variables using
the ∃ and ∀ operators. We measure time complexity of a symbolic algorithm
by a worst case #symbolic-operations it performs. A discussion on a rigorous
treatment of BDD operations can be found in the paper’s full version [3].

Game Structures and Games. We follow the notations of [9]. A game struc-
ture GS = (I,O, θI , θO, ρI , ρO) defines a turn-based interaction between an
environment and a system players. The input variables I and output variables
O are two disjoint sets of Boolean variables that are controlled by the envi-
ronment and system, respectively. The environment’s initial assumption θI is an
assertion over I, and the system’s initial guarantee θO is an assertion over I∪O.
The environment’s safety assumption ρI is an assertion over I ∪ O ∪ I ′, where
the interpretation of (i0, o0, i

′
1) |= ρI is that from state (i0, o0) the environment
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can assign i1 to the input variables. W.l.o.g, we assume that ρI is deadlock free,
i.e., for all (i0, o0) there exists an i1 s.t. (i0, o0, i

′
1) |= ρI . Similarly, the system’s

safety guarantee ρO is an assertion over I ∪O∪I ′∪O′, where the interpretation
of (i0, o0, i

′
1, o
′
1) |= ρO is that from state (i0, o0) when the environment assigns i1

to the input variables, the system can assign o1 to the output variables. Again,
w.l.o.g, we assume that ρO is deadlock free, i.e., for all (i0, o0, i

′
1) there exists an

o1 s.t. (i0, o0, i
′
1, o
′
1) |= ρO.

A play over GS progresses by the players taking turns to assign values to their
own variables ad infinitum, where the players must satisfy the initial conditions
at the start and the safety conditions thereafter. Formally, a play π = s0, s1, . . .
is an infinite sequence of states over I∪O such that s0 |= θI∧θO and (sj , s

′
j+1) |=

ρI∧ρO for all j ≥ 0. A play prefix is either a play or a finite sequence of states that
can be extended to a play. Then a strategy is a function f : (2I∪O)+ × 2I → 2O

such that if s0, . . . , sm is a play prefix, (sm, i
′) |= ρI and f(s0, . . . , sm, i) = o,

then (sm, i
′, o′) |= ρO. Intuitively, a strategy directs the system on what to

assign to the output variables, depending on the history of a play and the most
recent assignment by the environment to the input variables. A play prefix is
said to be consistent with a strategy f if for all states sj = (ij , oj) in that
prefix, f(s0, . . . , sj−1, ij) = oj for all j ≥ 0. A strategy is memoryless if it only
depends on the last state and the most recent assignment to the input variables.
Formally, a memoryless strategy is a function f : (2I∪O)× 2I → 2O such that if
(sm, i

′) |= ρI and f(sm, i
′) = o, then (sm, i

′, o′) |= ρO.
A game is a tuple (GS , ϕ) where GS is a game structure over inputs I and

outputs O and ϕ is an LTL formula over I ∪ O called a winning condition. A
play π is winning for the system if π |= ϕ. A strategy f wins from state s if every
play π from s that is consistent with f is winning for the system. A strategy
f wins from S, where S is an assertion over I ∪ O, if it wins from every state
s |= S. The winning region of the system is the set of states from which it has a
winning strategy. A strategy f is winning if for every state i |= θI there exists
a state o ∈ 2O such that (i , o) |= θO and f wins from (i , o). In this paper, we
have the following games that are defined over the following winning conditions.

– Reachability games: F(ϕ) where ϕ is an assertion over I ∪ O.
– Safety games: G(ϕ) where ϕ is an assertion over I ∪ O.
– Büchi games: GF(ϕ) where ϕ is an assertion over I ∪ O.
– GR(k) games:

∧k
l=1(

∧nl

i=1 GF(ϕl,i) →
∧ml

j=1 GF(ψl,j)) where all ϕl,i and ψl,j

are assertions over I ∪ O.

Given a game (GS , ϕ), realizability is the problem of deciding whether a win-
ning strategy for the system exists, and synthesis is the problem of constructing
a winning strategy if one exists. We note that a realizability check can be reduced
to the identification of the winning region, W : A winning strategy exists iff for
all i |= θI there exists o ∈ 2O such that (i , o) |= θO and (i , o) ∈ W . Hence, the
synthesis problem can be solved by constructing a strategy that wins from W .

Game Graphs and Weak Büchi Games. The game graph for a game
structure GS is the directed graph (V,E) with vertices V = 2I∪O and edges
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E = {(s, t) | (s, t′) |= ρI ∧ ρO}. Intuitively, vertices are states over I and O, and
edges represent valid transitions between states according to the safety condi-
tions. The game graph can be useful for analyzing the structural properties of a
game structure via graph-theoretical properties.

A finite path in a directed graph (V,E) is a sequence v0, . . . , vn ∈ V + such
that (vj , vj+1) ∈ E for all 0 ≤ j < n. An infinite path v0, v1, . . . ∈ V ω is similarly
defined. A vertex u is said to be reachable from another vertex v if there is a
finite path from v to u. A strongly connected component (SCC) of a directed
graph (V,E) is a maximal set of vertices within which every vertex is reachable
from every other vertex. It is well known that SCCs partition the set of vertices
of a directed graph, and that the set of SCCs is partially ordered with respect
to reachability. Also note that every infinite path ultimately stays in an SCC.

Let (GS ,GFϕ) be a game with a Büchi winning condition, and let S0 . . . ,Sm

be the set of SCCs that partition the game graph of GS . We say that (GS ,GFϕ)
is a weak Büchi game if, given the set F of states that satisfy the assertion ϕ,
for every SCC Si, either Si ⊆ F or Si ∩F = ∅. Thus, the SCCs of a weak Büchi
game are either accepting components, meaning all of its states are contained in
F , or non-accepting components, meaning none of its states is present in F . As a
consequence, a play in a weak Büchi game is winning for the system if the play
ultimately never exits an accepting component. Similarly, a strategy is winning
for the system if it can guarantee that every play will ultimately remain inside
an accepting component.

3 Separated GR(k) Games

Our framework relies on the core idea of reducing the problem of adapter gener-
ation to synthesizing a Separated GR(k) game, which we define in this section.
At a high-level, a separated GR(k) differentiates from a regular GR(k) game in
a separation between input and output variables in both the game structure and
winning condition. We show in later sections that the separation of variables
leads to algorithmic benefits to the synthesis problem. Formally we have the
following.

Definition 1. A game structure GS = (I,O, θI , θO, ρI , ρO) separates variables
over input variables I and output variables O if:

– The environment’s initial assumption θI is an assertion over I only.
– The system’s initial guarantees θO is an assertion over O only.
– The environment’s safety assumption ρI is an assertion over I ∪ I ′ only.
– The system’s safety guarantee ρO is an assertion over O ∪O′ only.

The interpretation of a game structure which separates variables is that the
underlying game graph (V,E) is the product of two distinct directed graphs over
disjoint sets of variables: GI over the variables I ∪I ′, and GO over the variables
O ∪ O′. For J ∈ {I,O}, the vertices of GJ correspond to states over J and
there is an edge between states s and t if (s, t′) |= ρJ .
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Next, the notion of separation of variables extends to games with GR(k)
winning conditions as follows:

Definition 2. A GR(k) winning condition ϕ over I ∪ O separates variables

w.r.t. I and O if ϕ =
∧k

l=1(
∧nl

i=1 GF(ϕl,i) →
∧ml

j=1 GF(ψl,j)) such that each ϕl,i

is an assertion over I and each ψl,j is an assertion over O.

A Separated GR(k) game is a GR(k) game (GS , ϕ) over I ∪O in which both
GS and ϕ separate variables w.r.t. I and O.

A major observation is that in a game played over a separated game structure,
the actions of the two players are independent: the environment’s actions do
no limit the system’s actions, and vice versa. In later sections we see how this
observation leads to algorithmic improvements in solving separated GR(k) games
over a regular GR(k) game. Specifically, in Section 4 we see how to use Separated
GR(k) games to generate the adapter transducer. In Sections 5 and 6 we discuss
algorithms for realizability and synthesis of Separated GR(k) games.

4 From Transducers to Separated GR(k)

We describe, using an end-to-end-example, how adapter transducer generation
can be reduced to synthesis of Separated GR(k) games.

We begin with user-provided Target and Adaptee transducers. These trans-
ducers model the behavior of a system that we want to use (Adaptee) and the
behavior of a system that we want to emulate (Target). For example, the tran-
sition systems in Figure 1 formulates the following scenario. (1) Target is an
hardware interface that we want to support, such that the U (up) and the D
(down) commands send the hardware from mode s0 to modes s1 and s2, re-
spectively, from which the S (stay) command keeps the system looping at the
chosen mode. (2) Adaptee that is a hardware that we can use that also has three
modes, but which does not allow the command S after U . Instead, it allows a D
command that switches the mode back to s0.

s0S|¬t1 ∧ ¬t0

s1

s2

Target

U | t1 ∧ ¬t0

D | ¬t1 ∧ t0

S | ¬t1 ∧ t0

S | t1 ∧ ¬t0

s0S | ¬a1 ∧ ¬a0

s1

s2

Adaptee

U | ¬a1 ∧ a0

D | a1 ∧ ¬a0

D | ¬a1 ∧ ¬a0

S | a1 ∧ ¬a0

Fig. 1: An example of Target and Adaptee transducers. In this example, the ti
and ai variables encode the binary representation of the mode being moved to.
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The second step is a formulation of the equivalence relation, where we define
the type of emulation that we require. In our example we want to maintain the
following property: if Target visits a mode si infinitely often for a certain input
sequence, then so does Adaptee ◦Adapter . This can be expressed in LTL as:

2∧
i=0

GF(bint(si))→ GF(bina(si))

where bint(si) denotes the binary representation of mode si using variables t1, t0,
and similarly for bina(si) using variables a1, a0. Note that in this example we
cannot just synthesize an adapter that cycles through all modes in Adaptee ◦
Adapter infinitely often, since the Adaptee transducer does not allow that.

As a third step, to generate a separated GR(k) game, we translate the Target
and Adaptee transducers to Input and Output transition systems as depicted, for
example, in Figure 2. Since Adaptee and Target are two separate transducers,
each with its own structure, it is natural to model these as two separate transition
systems on distinct variables. Thus, the transition systems are produced by the
well known projection construction that turns an FST into a FSA that accepts
the output language of the transducers [32]. Note that in our setting Target is
translated to Input and Adaptee is translated to Output . This may appear as a
role inversion to readers. We propose it because the role of the controller in our
setting is to translate the behavior of Target to an equivalent behavior of the
Adaptee.

¬t1 ∧ ¬t0

¬t1 ∧ t0

t1 ∧ ¬t0

Input

¬a1 ∧ ¬a0

¬a1 ∧ a0

a1 ∧ ¬a0

Output

Fig. 2: A direct translation of the Target transducer to an Input transition system
and of the Adaptee transducer to an Output transition system.

These separate transition systems, together with the specification described
above, form a Separated GR(k) that, as a fourth step, we can feed to the Sep-
arated GR(k) synthesis algorithm. The output of the algorithm is a transducer
called Controller, that maps runs of Input to runs of Output , as shown, in our
example, in Figure 3. This, in fact, connects the output of the Target to the
output of the Adaptee.

As a final step, from the controller we can construct the Adapter using the
formula Adapter = Adaptee−1 ◦ Controller ◦ Target . This means that Adapter
contains an internal model of the Target and of the Adaptee. These internal
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s0¬t1 ∧ ¬t0 | ¬a1 ∧ ¬a0 s1

¬t1 ∧ ¬t0 | ¬a1 ∧ a0

¬t1 ∧ t0 | ¬a1 ∧ a0

¬t1 ∧ ¬t0 | ¬a1 ∧ ¬a0

¬t1 ∧ t0 | ¬a1 ∧ ¬a0

t1 ∧ ¬t0 | ¬a1 ∧ ¬a0

t1 ∧ ¬t0 | a1 ∧ ¬a0

Fig. 3: A controller that reads runs of the Input transition system and generates
runs of the Output transition system such that the specified Separated GR(2)
formula is guaranteed to be true.

models are used to translate inputs to expected outputs of the adapter, then
feed them to the controller, and then feed the output of the controller to the
reverse of Adaptee to generate an input to Adaptee that emulates the behaviour
of Target . Note that it is possible to invert transducers symbolically [21].

4.1 Additional Usages of our Technique

We give two more examples to demonstrate uses of Separated GR(k).

Cleaning Robots. This example demonstrates how one can use our technique
to fulfill tasks that have not been covered by an execution of an existing trans-
ducer. Consider a cleaning robot (the Target transducer) that moves along a
corridor-shaped house, from room 1 to room n. The robot follows some plan
and accordingly cleans some of the rooms. Our goal is to synthesize a controller
that activates a second cleaning robot (the Adaptee transducer) that follows
the first robot and cleans exactly those rooms left uncleaned. Each robot con-
trols a set of variables indicating which room they are in and which rooms
they have cleaned, and additionally the original robot controls a variable in-
dicating whether it is done with its cleaning. Our controller is required to
fulfill requirements of the form: GF(done) ∧ GF(!in:cleani) → GF(out :cleani),
GF(done) ∧ GF(in:cleani)→ GF(!out :cleani).

Railway Signalling. This example demonstrates how one can use our tech-
nique to improve the quality of an existing transducer. We consider a junction
of n railways, each equipped with a signal that can be turned on (light in green)
or off (light in red). Some railways overlap and thus their signals cannot be
turned on simultaneously. We consider an overlapping pattern where railways
1-4 overlap, and similarly 3-6, 5-8, and so on.

An existing system (the Target transducer) was programmed to be strictly
safe in order to avoid accidents, so it never raises two signals simultaneously.
We want to improve the system’s performance by synthesizing a controller that
reads the assignments that the existing transducer produces and accordingly
assign values to the signals in such a way as to produce both safe and maximal
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valuations: the ith signal is turned on if and only if the signal of every rail
that overlaps with the ith rail is off. Furthermore, we want to maintain liveness
properties of the Target system: (1) every signal that is turned on infinitely often
by the existing system must be turned on infinitely often by the new system as
well, and (2) if a signal is turned on at least once every m steps (where m is a
parameter of the specification) by the existing system, then the same holds for
the new system.

Note that, in terms of the GR(k) formula, this example is similar to the
“hardware” example that we gave; we want to emulate the Target ’s execution.
The crux of the example lies in its Adaptee. Here, unlike in the explanatory
example, the Adaptee is not a given hardware, but rather a virtual component
that the user introduced to improve the Target performance. In this case the
Adaptee produces safe and maximal signals.

5 Overview for Solving Separated GR(k) Games

The adapter generation framework described in Section 4 relies on synthesizing
a controller from a separated GR(k) game. In this section and the next, we
describe how to solve separated GR(k) games. This section gives an overview of
the algorithm in Section 5.1 and describes a necessary property, called the delay
property, in Section 5.2. The delay property is necessary to prove correctness
of our synthesis algorithm. Later, Section 6 gives the complete algorithm and
proves its correctness.

5.1 Algorithm Overview and Intuition

Following Section 3, we are given a Separated GR(k) game that consists of a

game structure GS and a winning condition in a GR(k) form ϕ =
∧k

l=1 ϕl, where
ϕl =

∧nl

i=1 GF(al,i)→
∧ml

j=1 GF(gl,j). Let G be the game graph of GS . Consider
an infinite play π in GS . Like every infinite path on a finite graph, π eventually
stabilizes in an SCC S. Due to separation of variables, the game graph G can
be decomposed into an input graph GI and an output graph GO. Then the
projection of S on the inputs is an SCC SI in GI , and the projection of S on
the outputs is an SCC SO in GO. The input side of π converges to SI whereas
the output side π converges to SO.

Now, let S be an SCC with projections SI on GI and SO on GO. Then
we call S accepting if for every constraint ϕl, where l ∈ {1, . . . , k}, one of the
following holds:

All guarantees hold in S. For every j ∈ {1, . . . ,ml}, there exists o ∈ SO
such that o |= gl,j .

Some assumption cannot hold in S. There exists j ∈ {1, . . . , nl} such that
for all i ∈ SI , i 6|= al,j .

Then from the definition of an accepting SCC we have the following: a strat-
egy that makes sure that every play converges to an accepting SCC, in which
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all the relevant guarantee states are visited, is a winning strategy for the system
in (GS , ϕ). To synthesize such a strategy, we do the following: (i) synthesize a
strategy fB for which every play converges to an accepting SCC; (ii) synthesize
a strategy ftravel that travels within every accepting SCC, satisfying as many of
the gl,j guarantees as possible. (iii) construct an overall winning strategy f that
works as follows: the system plays fB until reaching an accepting SCC S, then
the system switches to ftravel to satisfy as many of the gl,j guarantees in S as
possible; if the environment moves the play to a non-accepting SCC, the system
can start playing fB again to reach a different accepting SCC.

The strategy fB can be found by synthesizing the weak Büchi game
(GS ,GF(acc)), where acc is the assertion that accepts exactly those states that
belong to accepting SCCs (note that (GS ,GF(acc)) is a well defined weak Büchi
game). ftravel can be constructed by simply finding a path in SO that satisfies
the maximum number of guarantees.

A complication arises however when switching between ftravel and fB , since
it is conceivable that while the system is following ftravel , the environment could
move to a different SCC that is outside of the winning region of fB . Thus, it
is not clear that we can combine these strategies to make an overall winning
strategy for the system. To show that we can indeed combine both strategies,
we need the following property that we call the delay property : if (i1, o1) is a
state in the winning region of fB , and (i2, o0) is a state for which there is a
path in GI from i1 to i2 and a path in GO from o0 to o1, then (i2, o0) is also
in the winning region of fB . We formally state and prove the delay property in
Section 5.2. In Section 6 we give details of the construction of fB , ftravel and the
use of the delay property to prove correctness of the overall winning strategy f .

5.2 The Delay Property

The delay property essentially says that if an SCC S is contained in the winning
region, and the environment moves from S unilaterally to a different SCC S′,
then S′ is also in the winning region of the system. In this section, we prove that
the Büchi game (GS ,GF(acc)) where GS = (I,O, θI , θO, ρI , ρO), as defined in
Section 5.1, satisfies the delay property. Throughout this section, we write GI
and GO to denote the graphs over 2I and 2O, respectively, as in Section 5.1. We
start with the following lemma that states that the system can still win in spite
of a single step delay.

Lemma 1. Let i0, i1 ∈ 2I such that (i0, i
′
1) |= ρI , and assume that the system

can win from (i0, o0). Then the system can also win from (i1, o0).

Proof. Let f be a winning strategy for the system from (i0, o0). We construct a
winning strategy fd from (i1, o0). Intuitively, fd acts from state (i1, o0) as if it
were following f from state (i0, o0), with a delay of a single step: the input in
the current step is used to choose the output in the next step.

We use f to define fd inductively over play prefixes of lengthm ≥ 1, by setting
fd((i1, o0), . . . , (im, om−1), im+1) = f((i0, o0), . . . , (im−1, om−1), im). Note that
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fd is well defined since GS separates variables: from state (i , o), the outputs
that can be chosen for the successor state depend only on o, and not on i .
Note that by this definition, for every play (i1, o0), (i2, o1), . . . , (im+1, om), . . .
consistent with fd, the play (i0, o0), (i1, o1), . . . , (im, om), . . . is consistent with
f . We remark that we define fd only for proving the lemma, and it is not part
of our solution.

Next, we show that fd is winning from (i1, o0). Take a play
(i1, o0), (i2, o1), . . . , consistent with fd. By the construction, (i0, o0), (i1, o1), . . .
is consistent with f . Since this is a play on a weak Büchi game, after some point
it must remain in a single SCC S, say from state (ij , oj). Since f is a winning
strategy, the SCC S must be accepting. Then oj , oj+1, . . . is an infinite path in
the SCC S|O, and ij , ij+1, . . . is an infinite path in the SCC S|I . Consequently,

(i1, o0), (i2, o1), . . . converges to an SCC Ŝ in which Ŝ|I = S|I and Ŝ|O = S|O.
Since the conditions for an SCC D to be accepting depend only on the relation
between D|I and D|O, we have that Ŝ is accepting since S is accepting as well.

ut

We can now prove the delay property, following by straightforward induction
from Lemma 1.

Theorem 1 (Delay Property Theorem). Let i0, . . . , in ∈ (2I)+ be a path in
GI , and for m ≥ 0, let o−m, . . . , o0 ∈ (2O)+ be a path in GO. Assume that the
system can win from (i0, o0). Then the system can also win from (in, o−m).

Proof. From (in, o−m), the system can simply ignore the inputs and follow the
path in GO to o0. Let (in+m, o0) be the state at that point in some play. Note
that there is a path between in and in+m, and therefore there is a path between
i0 and in+m. If the system can win from (i0, o0) then by using Lemma 1 in
the induction steps, the system can win by induction from (i , o0) for all i such
that there is a path in between i0 and i . Therefore, the system can win from
(in+m, o0), and by consequence from (in, o−m). ut

A corollary of Theorem 1 is the following statement about the structure of
the winning region of the weak Büchi game B = (GS ,GF(acc)) as defined in
Section 5.1.

Corollary 1. The winning region of B is a union of SCCs.

Proof. Let (i , o) be a state in the winning region of B, let (î , ô) be a state in
the same SCC S of (i , o), and let S|I and S|O be the projections of S on GI
and GO, respectively. Then there is a path i0, . . . , in for some n ≥ 0 in S|I such
that i0 = i and î = in. Similarly, there is a path o−m, . . . , o0 for some m ≥ 0 in
S|O such that ô0 = o and ô = o−m. Then by the delay property of Theorem 1,
the vertex (î , ô) = (in, o−m) is also in the winning region of B. ut

We use Theorem 1 and Corollary 1 in the proof of correctness of the overall
winning strategy f , as described in Section 6.2.
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6 Algorithms for Solving Separated GR(k) Games

In this section we provide the exact details of our synthesis algorithm for Sepa-
rated GR(k) games, as described in Section 5.1. Since constructing fB involves
defining and solving a weak Büchi game, we first describe these in Section 6.1.
We remark that our weak Büchi game synthesis algorithm works for all weak
Büchi games, and not just for the special weak Büchi game defined in Section 5.1.
Specifically, it works even when the underlying game structure does not sepa-
rates variables. Next, in Section 6.2, we complete the algorithm construction and
describe the correctness of our overall synthesis algorithm.

6.1 Realizability and Synthesis for Weak Büchi Games

We present a symbolic algorithm to solve synthesis of a weak Büchi game. When
represented in explicit state-representation, weak Büchi games are known to be
solved in linear-time in the size of the game [12, 27]. In this section, we adapt
the algorithm from [12, 27] to symbolic state-space representation. For sake of
exposition, we give an overview of the algorithm and then present our symbolic
modification.

Overview Given a weak Büchi game, recall that each SCC in its game graph
G is either an accepting SCC or a non-accepting SCC. The goal is to find the
winning regions in the weak Büchi game. This can be done by backward induc-
tion on the topological ordering of the SCCs as follows. Let (S0, . . .Sm) be a
topological sort of the SCCs in G.

Base Case: Consider all terminal partitions, say Sj , . . . ,Sm; that is, every
SCC from which no other SCC is reachable. In this case, plays beginning in a
terminal SCC will never leave it. Therefore, all states of terminal SCCs that are
accepting are in the winning region of the system and all states of terminal SCCs
that are non-accepting are not in the winning region of the environment.

Induction Step: Let ~S = (Si+1, . . . , Sm), and suppose that the set
⋃ ~S has

been classified into winning regions for the system W s
i+1 and the environment

W e
i+1, respectively. Let ~Snew = (Sj ,Sj+1, . . . ,Si) be the SCCs from which all

edges leaving the SCC lead to an SCC in ~S. Further, let A and N be the unions
of all accepting SCCs and all non-accepting SCCs in ~Snew, respectively. Then
the basic idea is as follows: The system can win from s ∈ N if and only if it can
force F(W s

i+1) from s. Analogously, the system can win from s ∈ A if and only if
it can force G(A∪W s

i+1) from s. Hence, by solving these reachability and safety
games, we can update W s

i+1 and W e
i+1 into W s

j and W s
j that partition the larger

set
⋃

(Sj , . . . , Sm) into winning regions for the system and the environment. The
winning strategy can be constructed in a standard way as a side-product of the
reachability and safety games in each step, see for example [40, 41].

Symbolic Algorithm for Weak Büchi Games. Given a weak Büchi game
B = ((I,O, θI , θO, ρI , ρO),GF(acc)) with BDDs representing θI , θO, ρI , ρO
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and acc, our goal is to compute a BDD for the winning region and to synthe-
size a memoryless winning strategy for the system. The construction follows a
fixed-point computation that adapts the inductive procedure described in the
overview: In the basis of the fixed point computation, the winning region is
the set of accepting terminal SCCs; in the inductive step, the winning region
includes winning states by examining SCCs that are higher in the topological
ordering on SCCs. In what follows we describe a sequence of BDDs that we con-
struct towards constructing the overall BDD for the winning region.We use the
notation X to denote a set of variables over I ∪ O. For the sake of the current
construction, memoryless strategies are given in the form of BDDs over X ,X ′,
for further details on the BDDs constructions see the full version for details [3].

BDD constructions. We start by constructing a BDD for a predicate that indi-
cates whether two states in a game structure are present in the same SCC. Let
predicate Reach(s, t′) hold if there is a path from state s over I ∪ O to state t
over I ∪O in the game structure GS . Similarly, a predicate Reach−1(s, t′) holds
if and only if Reach(t, s′) holds. BDDs for Reach and Reach−1 can be computed
in O(N) symbolic operations using the transition relation of the game structure.
Then, a BDD indicating if two states share the same SCC, is constructed in
O(N) symbolic operations by SCC(X ,X ′) := Reach(X ,X ′) ∧ Reach−1(X ,X ′).

Next, we construct a BDD for the union of the terminal SCCs, required by
the basis of induction for the construction of the winning region. Let predi-
cate Terminal(s) hold if state s over I ∪ O is present in a terminal SCC. Then
Terminal(X ) := ∀X ′ : Reach(X ,X ′) → SCC(X ,X ′). Therefore, given BDDs for
Reach and SCC, the construction of Terminal requires O(1) symbolic operations.

Computing the Winning Region. We now describe the fixed-point computa-
tion to construct a BDD for the winning region in a weak Büchi game. Let
Reachability(M,N)(X ) denote a BDD generated by solving a reachability game
that takes as input a set of source states M and target states N and outputs
those states in M from which the system can guarantee to move into N . Simi-
larly, let Safety(M,N)(X ) denote a BDD generated by solving a safety game that
takes as input a set of source states M and target states N and outputs those
states in M from which the system can guarantee that all plays remain inside the
set N . These constructions are standard, details can be found in [20, Chapter 2].

Now, let Win(s) denote that state s over I ∪ O is in the winning region.
Then, Win(X ) is the fixed point of the BDD Win Aux defined below, where
the construction essentially follows the high-level algorithm description. The
BDD Acc(X ) represents the formula acc encoding the set of accepting states.

In addition, DCi(X ) is the union
⋃ ~S of the Downward-Closed set of SCCs,

i.e. the SCCs that have already been classified into winning or not-winning, and
DCi

new(X )is the union
⋃ ~Snew of the SCCs in DCi(X ) that were not in DCi−1(X ).

Finally, Ni(X ) is the subset N of non-accepting states in DCi
new(X ), and Ai(X )

is the subset A of accepting states in DCi
new(X ). We then define Win Aux as

follows.
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Base Case.
1: Win Aux0(X ) := Terminal(X ) ∧ Acc(X)
2: DC0(X ) := Terminal(X )

Inductive Step.
1: DCi+1(X ) := ∀X ′ : Reach(X ,X ′) → (SCC(X ,X ′) ∨ DCi(X ′))
2: DCi+1

new(X ) := DCi+1(X ) \ DCi(X )
3: Ni+1(X) := DCi+1

new(X) ∧ ¬Acc(X)
4: Ai+1(X) := DCi+1

new(X) ∧ Acc(X)
5: Win Auxi+1(X ) := Win Auxi(X ) ∨ Reachability(Ni+1(X),Win Auxi(X ))(X)

∨Safety(Ai+1(X),Ai+1(X)∨Win Auxi(X ))(X)

To explain the construction of Win, note that a state s in DCi+1(X ) is
winning in one of these cases: (i) s is a winning state in DCi(X ). (ii) s is a
non-accepting state in DCi+1(X ) from which the system can force the play
into a winning state in DCi(X ). This set of states can be obtained from
Reachability(Ni+1(X),Win Auxi(X ))(X). (iii) s is an accepting state in DCi+1(X ) from
which the system can guarantee that every play that leaves the accepting SCC
moves into a winning state in DCi(X ). This set of states can be obtained from
Safety(Ai+1(X),Ai+1(X)∨Win Auxi(X ))(X).

Finally, to check realizability, construct the BDD ∀I(InitIn(I) →
∃O(InitOut(O) ∧Win(I ∪O))), where InitIn(I) and InitOut(O) are BDDs repre-
senting θI and θO, respectively. This BDD is equal to true iff B is realizable.

The fixed-point computation can be extended in a standard way to also
compute a BDD representation Fb(X,X ′) of the winning strategy fB , such that
(s, (i′, o′)) |= Fb(X,X ′) iff fB(s, i) = o, as we elaborate in the full version [3].
We then have the following theorem that follows our construction.

Theorem 2. Realizability and synthesis for weak Büchi games can be done in
O(N) symbolic steps.

Proof Outline. The proposed construction symbolically implements the induc-
tive procedure of the explicit algorithm. Hence, it correctly identifies the system’s
winning region. It remains to show that the algorithm performs O(N) symbolic
operations. First of all, the constructions of SCC and Terminal take O(N) sym-
bolic operations collectively. It suffices to show that in the i-th induction step,
solving the reachability and safety games performs O(|DCi+1 \DCi|) operations.
This can be proven by a careful analysis of the operations and the sizes of re-
sulting BDDs using standard results on safety and reachability games. ut

6.2 Realizability and Synthesis for Separated GR(k) Games

We finally make use of the elements obtained so far towards solving synthesis for
Separated GR(k) games. Our construction follows the overview from Section 5.1.
To recall, we describe and construct two auxiliary strategies fB and ftravel and
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combine them to generate the final strategy f . We use the delay property theorem
from Section 5.2 to prove the correctness of our algorithm.

We are given a Separated GR(k) game structure GS = (I,O, θI , θO, ρI , ρO)

and a winning condition ϕ =
∧k

l=1 ϕl, where ϕl =
∧nl

i=1 GF(al,i) →∧ml

j=1 GF(gl,j)). We first represent GS and ϕ as BDDs by standard means. We
then define and construct the following.

Constructing fB. Auxiliary strategy fB is the winning strategy of the system
player in a weak Büchi game constructed form the separated GR(k) game. To
construct a weak Büchi game, we first construct, in O(|ϕ|+N) symbolic opera-
tions, a BDD Acc(I∪O) that describes the set of accepting states. The construc-
tion is standard. Next, let acc be the assertion represented by Acc (the assertion
defined in Section 5.1). Then the weak Büchi game is B = (GS ,GF(acc)). Finally,
we construct fB as the winning strategy of B, following Section 6.1.

Constructing ftravel . For the construction of ftravel , we arbitrarily order all guar-
antees that appear in our GR(k) formula: gar0, . . . , garm−1. For each guarantee
gar j , we construct a reachability strategy fr(j) that, when applied inside an
SCC SO in the output game graph GO, moves towards a state that satisfies gar j

without ever leaving SO. In case no such state exists in SO, fr(j) returns a distin-
guished value ⊥. Note that this strategy can entirely ignore the inputs. We equip
ftravel with a memory variable mem that stores values from {0, . . . ,m−1}. Then
ftravel(s, i) is operated as follows: for mem,mem +1, . . . we find the first mem +j
(mod m) such that the SCC of s includes a gar j-state, and activate fr(mem+j)

to reach such state. If no guarantees can be satisfied in S, we just return an ar-
bitrary output to stay in SO. The construction of ftravel requires O(|ϕ|N) sym-
bolic BDD-operations as we need to construct m reachability strategies (clearly,
m ≤ |ϕ|).

Constructing the overall strategy f . Finally, we interleave the strategies fB and
ftravel into a single strategy f as follows: given a state s and an input i, if
s |= Acc(X) (that is, if s is an accepting state), then set f(s, i) = ftravel(s, i);
otherwise set f(s, i) = fB(s, i). Whenever f switches from fB to ftravel , the
memory variable mem is reset to 0. The next lemma proves that if fB is winning
then so is f .

Lemma 2. If fB is a winning strategy for the weak Büchi game B =
(GS ,GF(acc)), then f is a winning strategy for the Separated GR(k) game
(GS , ϕ).

Proof. Since fB is a winning strategy, then for every initial input i |= θI there
is an initial output o |= θO such that (i, o) is in the winning region of GS.
We show that playing f always keeps the play in the winning region of GS, and
therefore the play eventually converges to an accepting SCC. Once this happens,
following ftravel guarantees that ϕ is satisfied. We know that as long as the play
is in the winning region of B, following fB will keep it inside the winning region.
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Therefore, when we switch from fB to ftravel we must be inside the winning
region and, by definition of f , in some accepting SCC S. Then ftravel makes sure
that as long as the environment remains in S|I , the projection of S over the
inputs, the system remains in S|O, the projection of S over the output. Thus all
in all the play remains in the winning region of S.

Therefore, the only way that the play can leave the winning region is if,
when the system is in a state (i0, o0) and chooses some output o−m according to
ftravel , the environment chooses input in such that the play leaves S and moves
to a state (in, o−m) in a different SCC of G. Note, however, that in this case
there is a path from i0 to in and a path from o−m to o0 (since by construction
ftravel remains in the same SCC in GO). Since (i0, o0) is in the winning region,
by Theorem 1 we have that (in, o−m) is in the winning region as well. ut

Final Results. Given Lemma 2, we can obtain our final results on synthesis
and realizability of Separated GR(k) games, as follows. Given a Separated GR(k)
game (GS , ϕ), construct acc and solve the weak Büchi game (GS ,GF(acc)). Then
construct fB , ftravel and f as described above. If realizable, then fB is a winning
strategy and from Lemma 2 we have that f is a winning strategy for (GS , ϕ).
If (GS ,GF(acc)) is unrealizable, then the environment can force every play to
converge to a non-accepting SCC. Since the GR(k) winning condition cannot be
satisfied from a non-accepting SCC, (GS , ϕ) is also not realizable. Thus we have
the following theorem, see [3] for full details.

Theorem 3. Realizability for separated GR(k) games can be reduced to realiz-
ability of weak Büchi games.

The final result on solving Separated GR(k) games is then as follows, see [3]
for full details.

Theorem 4. Let (GS , ϕ) be a separated GR(k) game over the input/output
variables I and O, respectively. Then, the realizability and synthesis problems for
(GS , ϕ) are solved in O(|ϕ|+N) and O(|ϕ|N) symbolic operations, respectively,
where N = |2I∪O|.

Proof Outline. Realizability and synthesis follow Lemma 2 and Theorem 3. It is
left to analyze the number of symbolic operations for constructing fB and then
f . In symbolic operations, constructing acc takes O(|ϕ| + N), and computing
the winning region W for (GS ,GF(acc)) takes O(N). Checking realizability can
be done by checking if for every initial input i there is an initial output o such
that (i, o) ∈ W , which takes O(1). The winning strategy fB can be computed
in the process of computing W , taking the same number of operations (see [3]
for details). Finally, constructing ftravel takes O((#gars)N) ≤ O(|ϕ|N), where
gars are all guarantees GF(gi,`) that appear in ϕ. Therefore, constructing f takes
O(|ϕ|N) symbolic operations in total. ut

Note that this result is an improvement over the complexity of synthesizing
GR(k) games in general [35].
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7 Implementation and Evaluation

We have implemented our Separated GR(k) framework for realizability and syn-
thesis in a prototype tool SGR(k). The tool implements our symbolic algorithm
using the CUDD [39] package for BDD manipulation. Our tool is evaluated on a
suite of benchmarks created from the examples described in Section 4.

Benchmark Suite. We have created a suite of parametric benchmarks from
the three examples described in Section 4. Our suite consists of 38 realizable
specifications. The parametric versions of the examples are described here.

The multi-mode hardware example is a generalization of the example pre-
sented at the beginning of Section 4. It is parameterized by the number of bits
n and has 2n modes. The Target can move from mode 0 to any mode and stay
there, while the Adaptee can only move from mode 0 to odd-numbered modes,
and up and down between modes 2i and 2i+ 1. The specification consists of 2n
variables. We generate 10 such benchmarks with n ∈ {1, . . . , 10}.

The cleaning robots example is parameterized in the number of rooms. For
a scenario with n rooms, the specification is written over 4n + 1 variables. We
create 10 such benchmarks with n ∈ {1 . . . , 10}.

The railways signalling example consists of two parameters: a junction of
n railways and the frequency parameter m. With parameters n and m, the
specification consists of (2 + 2dlogme)n variables. We generate 18 benchmarks
with n ∈ {2, . . . , 10} and m ∈ {2, 3}.

Experimental Setup and Methodology. We evaluate our tool against
Strix [1, 31], the current state-of-the-art tool for LTL synthesis and SYNTCOMP
2020 winner of 3 out of 4 tracks [2]. In order to run our benchmarks on Strix, we
transform the benchmarks (a game structure and a winning condition) into an
LTL formula that characterizes the same winning plays using the strict semantics
from [22]. To the best of our knowledge, there is no other synthesis/realizability
tool that operates on GR(k) specifications.

We compare the running time for checking realizability. For this, we compare
the running time of realizability checks of each benchmark on both tools. Every
benchmark is tested 10 times on both tools. We do this to account for the
randomness introduced during BDD construction due to the automatic variable
ordering by CUDD. For each benchmark we evaluate (a) the number of executions
on which the tools terminate and (b) the mean running time over 10 executions.

All experiments were executed on a single node of a high-performance com-
puter cluster consisting of an Intel Xeon processor running at 2.6 GHz with
32GB of memory with a timeout of 10 mins.

Observations and Inferences. Our experiments clearly demonstrate the scal-
ability and efficiency of our tool in solving Separated GR(k) formulas.

Figure 4 plots the mean running time for the three benchmarks. We further
report the mean values in Table 1. The table rows refer to the benchmarks we
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Fig. 4: Mean running time for different classes of benchmarks.

examine, and the columns refer to the value of the parameter n. As an example,
for the specification Cleaning(3), SGR(k)’s mean running time is 0.07 sec. (row
titled Cleaning(n);SGR(k), column titled 3) and Strix’s mean realizability check
running time is 58.3 sec. (row titled Cleaning(n);Strix), column titled 4). Cells
reading ‘TO’ indicate experiments reached a timeout.

The results show that our tool solves a significantly larger number of bench-
marks than Strix. On the few benchmarks which Strix solves, our tool outperforms
it by several orders of magnitude. Although the running time may vary depend-
ing on the automatic variable ordering chosen by CUDD, we do not believe it

n 1 2 3 4 5 6 7 8 9 10

MultiMode(n)
SGR(k) 0.06 0.05 0.05 0.06 0.06 0.08 0.1 0.19 0.46 1.07

Strix 0.13 0.29 TO TO TO TO TO TO TO TO

Cleaning(n)
SGR(k) 0.05 0.05 0.07 0.09 0.16 0.26 0.63 1.16 1.78 2.43

Strix 0.31 0.75 58.3 TO TO TO TO TO TO TO

Railways(n, 2)
SGR(k) - 0.11 0.17 0.71 3.88 11.8 15.1 40.8 219 TO

Strix - 382 TO TO TO TO TO TO TO TO

Railways(n, 3)
SGR(k) - 0.07 0.36 1.67 8.39 29.8 50.3 102 TO TO

Strix - 381 TO TO TO TO TO TO TO TO

Table 1: Mean realizability check running times (sec.)
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would vary enough to significantly change the results. Specifically, we calculated
the 99% confidence interval for our results, and validated that for all data points
our tool’s entire interval lies below the entire interval for Strix.

Only three benchmarks were unsolvable by our tool (in the sense that the
majority of the 10 executions timed out). The three benchmarks are the railway
signal examples with (n = 10,m = 2), (n = 9,m = 3), and (n = 10,m = 3).
These benchmarks consist of a large number of variables (54, 40, and 60, respec-
tively), making them particularly challenging. All executions of the remaining
benchmarks were solved in less than 4 mins by our tool.

We also examined the number of solved executions per benchmark. Our tool
solved all 10 executions for 35 out of 38 benchmarks. These are the 35 bench-
marks that appear as solved in Figure 4. For the railway signalling benchmark
with (n = 10,m = 2), our tool solved 2 out of 10 executions. In contrast, Strix was
not able to solve even one execution for 31 out of 38 benchmarks. Even increasing
the timeout to 8hrs only allowed Strix to solve a single additional benchmark. In
total, Strix and our tool verified realizability of 7 benchmarks and 36 out of 38
benchmarks, respectively. In summary, our experiments demonstrate that our
tool is able to solve specifications which are challenging for existing tools.

8 Related Work

The Adapter design pattern was introduced in [18], and has been used in many
software contexts since. Our interpretation of the pattern is inspired by automata
based description of the pattern proposed by Pedrazzini [34]. We reformulated
the problem as synthesis of reactive controllers that compose with existing sys-
tems to achieve a temporal specification, e.g. [7, 13, 17]. Note that our work
differs from such frameworks in its variables separation feature. A work with a
concept similar to adapting behaviors is the Shield synthesis that studies the
problem in which a synthesized controller corrects safety violations of an exist-
ing controller [24]. Note that in contrast, our problem is mostly concerned about
liveness adaptation.

Reactive synthesis of LTL winning conditions is 2EXPTIME complete in the
size of the formula [37], making it difficult to scale for applications. An approach
to overcome the computational barrier has been to investigate fragments and
variants of LTL with lower complexity for synthesis [4, 14, 16]. One such frag-
ment is GR(k) [9], that offers a balance between efficiency and expressiveness.
Specifically, GR(k) games are known to be efficient as they are solved in ex-
ponential time in the number of conjunctions k rather than exponential in the
state-space [35]. Several studies have also shown that GR(k) specifications are
highly expressive. As evidence, all properties expressed by deterministic Büchi
automata (DBA) can be expressed in GR(k) [16], where a study of commonly
appearing LTL patterns has shown that 52 of 55 patterns are DBA proper-
ties [15, 29]. DBA properties have also been identified as common patterns in
robotics applications [30].
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Finally, Separated GR(k) games exhibit the delay property, which intuitively
means that the system can win even after delaying its action for a finite amount of
time while ignoring the environment before “catching up” with the environment.
While this is reminiscent of asynchrony in reactive systems [6, 38], a further
exploration of relations between asynchrony and the delay property is required.

9 Conclusion

This paper presents a reactive systems-based model of the adapter design pat-
tern. We model the adapters as transducers and reduce the problem of finding
an Adapter transducer for a given Adaptee and Target systems, to the problem
of synthesizing strategies for Separated GR(k) games. Through an analysis of
theoretical complexity and algorithmic performance, we show that realizability
and synthesis of Separated GR(k) games is efficient and scalable. Furthermore,
by outperforming Strix, an existing state-of-the-art synthesis tool, we show that
algorithms for the Separated GR(k) class of specifications add value to the port-
folio of reactive synthesis tools.

The benefits of separation of input and output variables were previously
shown in the context of Boolean Functional Synthesis [11]. Through this work,
we showed that separation also leads to practically viable solutions in temporal
reactive synthesis, specifically when encoding the types of equivalence relations
that appear in reactive adaptation (where properties of runs of the first system
are compared to properties of runs of the other). Since the systems may be loosely
coupled, i.e., they may not run on the same clock, specifications that impose
joint temporal constraints on the two systems may not be realizable. Thus, our
proposition to use the type of equivalence that separated GR(k) formulas allow,
gives users the power needed for comparing the overall behaviors of the systems
while allowing realizability and efficient synthesis.

The results presented in this paper encourage future studies on the separa-
tion of variables in a broader context. For instance, reason about variants of
the adapter design pattern that do not separate variables all the way through.
That is to say, variants that translate to more general GR(k) specifications in
which the separation appears in the input and output systems but not in the
specification itself. One could further study the notion of separation of variables
in more the general LTL specifications. Another direction is to consider systems
that gets two types of input: from the input system (i.e. the Target) as well as
from an environment. We believe that these future directions would enable the
development of tools for synthesis from temporal specifications with a focus on
expressing practical applications as well as ensuring scalability and efficiency.
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