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Abstract. Asynchronous interactions are ubiquitous in computing sys-
tems and complicate design and programming. Automatic construction
of asynchronous programs from specifications (“synthesis”) could ease
the difficulty, but known methods are complex, and intractable in prac-
tice. This work develops substantially simpler synthesis methods. A di-
rect, exponentially more compact automaton construction is formulated
for the reduction of asynchronous to synchronous synthesis. Experiments
with a prototype implementation of the new method demonstrate prac-
tical feasibility. Furthermore, it is shown that for several useful classes
of temporal properties, automaton-based methods can be avoided alto-
gether and replaced with simpler Boolean constraint solving.

1 Introduction

Modern software and hardware systems harness asynchronous interactions to im-
prove speed, responsiveness, and power consumption: delay-insensitive circuits,
networks of sensors, multi-threaded programs and interacting web services are
all asynchronous in nature. Various factors contribute to asynchrony, such as
unpredictable transmission delays, concurrency, distributed execution, and par-
allelism. The common result is that each component of a system operates with
partial, out-of-date knowledge of the state of the others, which considerably
complicates system design and programming. Yet, it is often easier to state the
desired behavior of an asynchronous program. We therefore consider the question
of automatically constructing (i.e., synthesizing) a correct reactive asynchronous
program directly from its temporal specification.

The asynchronous synthesis problem was originally formulated by Pnueli and
Rosner in 1989 on the heels of their work on synchronous synthesis [31,32].
The task is that of constructing a (finite-state) program which interacts asyn-
chronously with its environment while meeting a temporal specification on the
actions at the interface between program and environment. Given a linear tem-
poral specification ϕ, Pnueli-Rosner show that asynchronous synthesis can be re-
duced to checking whether a derived specification ϕ′, specifying the required be-
havior of the scheduler, is synchronously synthesizable. That is, an asynchronous
program can implement ϕ iff a synchronous program can implement ϕ′.



It may then appear straightforward to construct asynchronous programs us-
ing one of the many tools that exist for synchronous synthesis. However, the
derived formula ϕ′ embeds a nontrivial stutter quantification, which requires a
complex intermediate automaton construction; it has not, to the authors’ knowl-
edge, ever been implemented. This situation is in stark contrast to that of syn-
chronous synthesis, for which multiple tools and algorithms have been created.

Alternative methods have been proposed for asynchronous synthesis: Finkbeiner
and Schewe reduce a bounded form of the problem to a SAT/SMT query [35],
and Klein, Piterman and Pnueli show that some GR(1) specifications4 can be
transformed as above to an approximate synchronous GR(1) property [21,22].
These alternatives, however, have drawbacks of their own. The SAT/SMT re-
duction is exponential in the number of interface (input and output) bits, an
important parameter; the GR(1) specifications amenable to transformation are
limited and are characterized by semantic conditions that are not easily checked.

This work presents two key simplifications. First, we define a new property,
PR(ϕ) (named in honor of Pnueli-Rosner’s pioneering work) which, like ϕ′, is
synchronously realizable if, and only if, ϕ is asynchronously realizable. We then
present an automaton construction for PR(ϕ) that is direct and simpler, and
results in an exponentially smaller automaton than the one for ϕ′. In particular,
the automaton for PR(ϕ) has only at most twice the states of the automaton
for ϕ, as opposed to the exponential blowup of the state space (in the number of
interface bits) incurred in the construction of the automaton for ϕ′. As almost
all synchronous automaton-based synthesis tools use an explicit encoding for
automaton states, this reduction is vital in practice.

We show how to implement the transformation PR symbolically (with BDDs),
so that interface bits are always represented in symbolic form. One can then
apply the modular strategy of Pnueli-Rosner: a symbolic automaton for ϕ is
transformed to a symbolic automaton for PR(ϕ) (instead of ϕ′), which is an-
alyzed with a synchronous synthesis tool. We establish that PR is conjunctive
and preserves safety5. These are important properties, used by tools such as Aca-
cia+ [8] and Unbeast [11] to optimize the synchronous synthesis task. The new
construction has been implemented in a prototype tool, BAS, and experiments
demonstrate feasibility in practice.

In addition, we establish that for several classes of temporal properties, which
are easily characterized by syntax, the automaton-based method can be avoided
entirely and replaced with Boolean constraint solving. The constraints are quan-
tified Boolean formulae, with prefix ∃∀ and a kernel that is derived from the
original specification. This surprising reduction, which resolves a temporal prob-
lem with Boolean reasoning, is a consequence of the highly adversarial role of
the environment in the asynchronous setting.

These contributions turn a seemingly intractable synthesis task into one that
is feasible in practice.

4 The GR(1) (“General Reactivity (1)”) subclass has an efficient symbolic procedure
for synchronous synthesis, formulated in [28] and implemented in several tools.

5 I.e., PR(
∧

i fi) =
∧

i PR(fi), and PR(f) is a safety property if f is a safety property.



2 Preliminaries

Temporal Specifications Linear Temporal Logic (LTL) [29] extends proposi-
tional logic with temporal operators. LTL formulae are defined as ϕ ::= True | False
| p | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | ϕ1Uϕ2| ♦ϕ | �ϕ | � ϕ. Here p is a proposition, and
X(Next), U (Until), ♦ (Eventually), � (Always), and �(Always in the past) are
temporal operators. The LTL semantics is standard, and is in the full version of
the paper. For an LTL formula ϕ, let L(ϕ) denote the set of words (over subsets
of propositions) that satisfy ϕ.

GR(1) is a useful fragment of LTL, where formulae are of the form (�Se ∧∧m
i=0 �♦Pi) ⇒ (�Ss ∧

∧n
i=0 �♦Qi), for propositional formulae Se, Ss, Pi, Qi.

Typically, the left-hand side of the implication is used to restrict the environ-
ment, by requiring safety and liveness assumptions to hold, while the right-hand
side is used to define the safety and liveness guarantees required of the system.

LTL specifications can be turned into equivalent Büchi automata, using stan-
dard constructions. A Büchi automaton,A, is specified by the tuple (Q,Q0, Σ, δ,G),
where Q is a set of states, Q0 ⊆ Q defines the initial states, Σ is the alphabet,
δ ⊆ Q × Σ × Q is the transition relation, and G ⊆ Q defines the “green” (also
known as “accepting” or “final”) states. A run r of the automaton on an infinite
word σ = a0, a1, . . . over Σ is an infinite sequence r = q0, a0, q1, a1, . . . such that
q0 is an initial state, and for each k, (qk, ak, qk+1) is in the transition relation.
Run r is accepting if a green state appears on it infinitely often; the language of
A, denoted L(A), is the set of words that have an accepting run.

The Asynchronous Synthesis Model The goal of synthesis is to construct an
“open” program M meeting a specification at its interface. In the asynchronous
setting, the program M interacts in a fair interleaved manner with its envi-
ronment E. The fairness restriction requires that E and M are each scheduled
infinitely often in all infinite executions. Let E//M denote this composition.
The interface between E and M is formed by the variables x and y. Variable x
is written by E and is read-only for M , while y is written by M and is read-
only for E. One can consider x (resp., y) to represent a vector of variables, i.e.,
x = (x1, . . . , xn) (resp., y = (y1, . . . , ym)) which is read (resp., written) atomi-
cally. Many of our results also extend to non-atomic reads and writes, and are
discussed in the full version of the paper.

The synthesis task is to construct a program M which satisfies a temporal
property ϕ(x, y) over the interface variables in the composition E//M , for any
environment E. The most adversarial environment is the one which sets x to an
arbitrary value at each scheduled step, we denote it by CHAOS(x). The behaviors
of the composition CHAOS(x)//M simulate those of E//M for all E. Hence, it
suffices to produce M which satisfies ϕ in the composition CHAOS(x)//M . One
can limit the set of environments through an assumption in the specification.

This leads to the formal definition of an asynchronous schedule, given by a
pair of functions, r, w : N → N, which represent read and write points, respec-
tively. The initial write point, w(0) = 0, and represents the choice of initial value



for the variable y. Without loss of generality, the read-write points alternate, i.e.,
for all i ≥ 0, w(i) ≤ r(i) < w(i+1) and r(i) < w(i+1) ≤ r(i+1). A strict asyn-
chronous schedule does not allow read and write points to overlap, i.e., the con-
straints are strengthened to w(i) < r(i) < w(i+1) and r(i) < w(i+1) < r(i+1).
A tight asynchronous schedule is the strict schedule without any non-read-write
gaps, i.e., r(k) = 2k+ 1 and w(k) = 2k, for all k. A synchronous schedule is the
special non-strict schedule where r(i) = i and w(i) = i, for all i.

Let Dv denote the binary domain {True,False} for a variable v. A program
M can be represented semantically as a function f : (Dx)∗ → Dy. For an
asynchronous schedule (r, w), a sequence σ = (Dx × Dy)ω is said to be an
asynchronous execution of f over (r, w) if the value of y is changed only at
writing points, in a manner that depends only on the values of x at prior reading
points. Formally, for all i ≥ 0, yw(i+1) = f(xr(0) . . . xr(i)), and for all j such that
w(i) ≤j<w(i + 1), yj=yw(i). The initial value of y is the value it has at point
w(0) = 0. The set of such sequences is denoted as asynch(f). Over synchronous
schedules, the set of such sequences is denoted by synch(f). Function f is an
asynchronous implementation of ϕ if all asynchronous executions of f over all
possible schedules satisfy ϕ, i.e., if asynch(f) ⊆ L(ϕ).

This formulation agrees with that given by Pnueli and Rosner for strict sched-
ules. For synchronous schedules (and other non-strict schedules), our formulation
has a Moore-style semantics – the output depends on strictly earlier inputs –
while Pnueli and Rosner formulate a Mealy semantics. A Moore semantics is
more appropriate for modeling software programs, where the output variable is
part of the state, and fits well with the theoretical constructions that follow.

Definition 1 (Asynchronous LTL Realizability). Given an LTL property
ϕ(x, y) over the input variable x and output variable y, the asynchronous LTL
realizability problem is to determine whether there is an asynchronous imple-
mentation for ϕ.

Definition 2 (Asynchronous LTL Synthesis). Given a realizable LTL-formula
ϕ, the asynchronous LTL synthesis problem is to construct an asynchronous im-
plementation of ϕ.

Examples Pnueli and Rosner give a number of interesting specifications. The
specification � (y≡Xx) (“the current output equals the next input”) is satisfi-
able but not realizable, as any implementation would have to be clairvoyant. On
the other hand, the flipped specification � (x≡Xy) (“the next output equals the
current input”) is synchronously realizable by a Moore machine which replays
the current input as the next output. The specification ♦�x≡♦� y is syn-
chronously realizable by the same machine, but is asynchronously unrealizable,
as shown next. Consider two input (x) sequences, under a schedule where reads
happen only at odd positions. In both, let x=true at all reading points. Then any
program must respond to both inputs with the same output sequence for y. Now
suppose that in the first sequence x is false at all non-read positions, while in the
second, x is true at all non-reading positions. In the first case, the specification



forces the output y-sequence to be false infinitely often; in the second, y is forced
to be true from some point on, a contradiction.

The negated specification ♦�x6≡♦� y is also asynchronously unrealizable,
for the same reason. This “gap” illustrates an intriguing difference from the
synchronous case, where either a specification is realizable for the system, or its
negation is realizable for the environment. The two halves of the equivalence,
i.e., ♦�x⇒♦� y and ♦� y⇒♦�x are individually asynchronously realizable,
by strategies that fix the output to y=true and to y=false, respectively.

From Asynchronous to Synchronous Synthesis Pnueli and Rosner reduced
asynchronous LTL synthesis to synchronous synthesis of Büchi objectives. Their
reduction applied to LTL-formula with a single input and output variable [32];
it was later extended to the non-atomic case [30]. The original Rosner-Pnueli
reduction deals exclusively with strict schedules, since they showed that it is
sufficient to consider only strict schedules.

Two infinite sequences are said to be stuttering equivalent if one sequence
can be obtained from the other by a finite duplication (“stretching”) of a given
state or by deletion (“compressing”) of finitely many contiguous identical states
retaining at least one of them. The stuttering quantification ∃≈ is defined as fol-
lows: ∃≈x.ϕ holds for sequence π if ∃x.ϕ holds for a sequence π′ that is stuttering
equivalent to π. Pnueli-Rosner showed that LTL-formula ϕ(x, y) over input x and
output y is asynchronously realizable iff a “kernel” formula (this is the precise for-
mula referred to as ϕ′ in the Introduction) K(r, w, x, y) = α(r, w)→ β(r, w, x, y)
over read sequence r, write sequence w, input sequence x and output sequence
y is synchronously realizable:

α(r, w) = (¬r ∧ ¬wU r) ∧�¬(r ∧ w) ∧� (r ⇒ (rU (¬r) Uw))

∧� (w ⇒ (wU (¬w) U r))

β(r, w, x, y) = ϕ(x, y) ∧ ∀a.� ((y = a) ⇒ ((y = a) U (¬w ∧ (y = a) Uw)))

∧∀≈x′.(� (¬r ⇒ ¬rU (x = x′)) ⇒ ϕ(x′, y))

Here, α encodes the strict scheduling constraints on read and write points, while
β encodes conditions which assure a correct asynchronous execution over (r, w).
The ∀≈ quantification, intuitively, quantifies over all adversarial schedules similar
to the current (r, w): it requires ϕ to hold over all sequences obtained from the
current sequence σ by stretching or compressing the segments between read and
write points, and choosing different values for x on those segments.

3 Symbolic Asynchronous Synthesis

Pnueli and Rosner’s procedure for asynchronous synthesis [32] is as follows: first,
a Büchi automaton is built for the kernel formula ¬K. This automaton is then
determinized and complemented to form a deterministic word automaton for K,
which is then re-interpreted as a tree automaton and tested for non-emptiness.
The transformations use standard constructions, except for the interpretation



of the ∃≈ operator in the formation of the Büchi automaton for ¬K. For a
Büchi automaton A, an automaton for ∃≈L(A) is constructed in two steps:
first applying a “stretching” transformation on A, followed by a “compressing”
transformation. Stretching introduces new automaton states of the form (q, a),
for each state q of A and each letter a.

When this general construction is applied to the formula ¬K, the alphabet
of the automaton A is formed of all possible valuations of the pair of variables
(x, y), which has size exponential in the number of interface bits. The stretching
step introduces a copy of an automaton state for each letter, which results in an
exponential blow-up of the state space of the constructed automaton. As all cur-
rent tools for synchronous synthesis represent automaton states explicitly6, the
exponential blowup introduced by the stuttering quantification is a significant
obstacle to implementation.

In Pnueli-Rosner’s construction, the determinization and complementation
steps are also complex, utilizing Safra’s construction. These steps are simplified
by the “Safraless” procedure adopted in current tools for synchronous synthesis.

The other major issue with the Pnueli-Rosner construction is that the kernel
formula K introduces the scheduling variables r, w as input variables. However,
the actions of a synthesized program should not rely on the values of these
variables. Pnueli-Rosner ensure this by checking satisfiability over “canonical”
tree models; it is unclear, however, how to realize this effect using a synchronous
synthesis tool as a black box.

We define a new property, PR(ϕ), that differs from K but, similarly, is syn-
chronously realizable if, and only if, ϕ is asynchronously realizable. We then
present an automaton construction for PR(ϕ) that bypasses the general con-
struction for ∃≈, avoiding the exponential blowup and resulting in an automa-
ton with at most twice the states of the original. Moreover, this construction
refers only to x and y, avoiding the second issue as well. We then show that this
construction can be implemented fully symbolically.

3.1 Basic Formulations and Properties

As formulated in Section 2, an asynchronous execution of f is determined by
the schedule (r, w). For a strict schedule, any infinite sequence representing an
asynchronous behavior of f over (r, w) may be partitioned into a sequence of
blocks, as follows. The start of the i’th block is at the i’th writing point, w(i),
and ends just before the i+1’st writing point, w(i+1). The schedule ensures the
i’th block includes the i’th reading point, r(i), associated with the input-output
value (xi, yi). As the value of y changes only at writing points, yi is constant in
the i’th block. Thus, the i’th block follows the pattern (⊥, yi)∗(xi, yi)(⊥, yi)∗,
where ⊥ denotes an arbitrary choice of x-value. Figure 1 illustrates a strict
asynchronous computation and its decomposition into blocks.

6 With one exception. BoSy’s DQBF procedure is fully symbolic but does not work
as well as the default QBF procedure [12].
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input x

output y
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Fig. 1. A strict asynchronous computation for f . Values of x at non-reading points are
shown as dotted. The y-value is constant between writing points, illustrated by a solid
rectangle. Blocks are shown as dashed rectangles.

Expansions. The set of expansions of sequence δ = (x0, y0)(x1, y1) . . . consists
of all sequences obtained by simultaneously replacing each (xi, yi) in δ by a
block with the pattern (⊥, yi)∗(xi, yi)(⊥, yi)∗. Formally, given sequences δ =
(x0, y0)(x1, y1) . . . and σ = (x̄0, ȳ0)(x̄1, ȳ1) . . ., δ expands to σ, denoted as δ expσ,
if there exists an asynchronous schedule (r̂, ŵ) for which σ is an execution that
is a block pattern of δ, i.e., for all i, xi = x̄r̂(i) and yi = ȳŵ(i) and for all j,
ŵ(i) ≤ j < ŵ(i+ 1) it is the case that ȳj = ȳŵ(i). The inverse relation (read as
contracts to) is denoted by exp−1. Figure 2 shows the synchronous computation
that contracts the computation shown in Figure 1.

Relational Operators. For a relation R, the modal operators 〈R〉 and [R] are
defined as follows. For any set S,

u ∈ 〈R〉S = (∃v : uRv ∧ v ∈ S) u ∈ [R]S = (∀v : uRv ⇒ v ∈ S)

By definition, the operators are negation duals, i.e., ¬〈R〉(¬S) = [R](S) for any
R and any S. For an LTL formula ϕ and a relation R over infinite sequences, we
let 〈R〉ϕ abbreviate 〈R〉(L(ϕ)), and similarly, let [R]ϕ abbreviate [R](L(ϕ)).

Galois Connections. Given partial orders (A,�A) and (B,�B), a pair of func-
tions g : A→ B and h : B → A form a Galois connection if, for all a ∈ A, b ∈ B:
g(a) �B b is equivalent to a �A h(b). From the definitions, it is clear that the
operators (〈R−1〉, [R]) form a Galois connection over the partial orders defined
by the subset relation. I.e., for any sets S and T : 〈R−1〉S ⊆ T iff, S ⊆ [R]T .

We first establish that the asynchronous executions of f are precisely the
synchronous executions of f under an inverse expansion.

Theorem 1. For an implementation f , asynch(f) = 〈 exp−1 〉synch(f).

Proof. (ping) Let σ be an execution in asynch(f), generated for some schedule
(r, w). For any k, consider the k’th block of σ. This is the set of positions from
w(k) to w(k + 1) − 1, which includes the k’th reading point r(k), say with the
value (xk, yk). Then the block follows the pattern (⊥, yk)∗(xk, yk)(⊥, yk)∗. So σ
is an expansion of the sequence δ = (x0, y0)(x1, y1) . . .. By the definition of an
asynchronous execution, the value yk+1 = f(x0, . . . , xk). This is precisely the
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Fig. 2. The contracted synchronous (Moore) computation

requirement for δ to be a synchronous execution of f . Hence, we have that there
is a δ such that δ expσ and δ ∈ synch(f). Therefore, σ ∈ 〈 exp−1 〉synch(f).

(pong) Let σ be in 〈 exp−1 〉synch(f). By definition, there is a synch(f) exe-
cution δ = (x0, y0)(x1, y1) . . . such that δ expσ. As δ is a synchronous execution
of f , the value yk+1 = f(x0, x1, . . . , xk), for all k. Then σ is an asynchronous
execution of f under the schedule where the k-th reading point is the point that
the k’th entry, (xk, yk), from δ is mapped to in σ, and the (k + 1)-th writing
point is the first point of the (k + 1)’st block in the expansion. ut

We now use the Galois connection to show how asynchronous synthesis can
be reduced to an equivalent synchronous synthesis task. Consider a property ϕ
that must hold asynchronously for an implementation f .

Theorem 2. Let f be an implementation function, and ϕ a property. Then
asynch(f) ⊆ L(ϕ) if, and only if, synch(f) ⊆ [ exp ]ϕ.

Proof. From Theorem 1, asynch(f) ⊆ L(ϕ) holds iff 〈 exp−1 〉synch(f) ⊆ L(ϕ)
does. By the Galois connection, this is equivalent to synch(f) ⊆ [ exp ]ϕ. ut

3.2 The Pnueli-Rosner Closure

We refer to the property [ exp ]ϕ as the Pnueli-Rosner closure of ϕ, in honor
of their pioneering work on this problem, and denote it by PR(ϕ). This has
interesting mathematical properties, which are useful in practice.

Theorem 3. PR(ϕ) = [ exp ]ϕ has the following properties.

1. (Closure) PR is monotonic and a downward closure, i.e., PR(ϕ) ⊆ L(ϕ)
2. (Conjunctivity) PR is conjunctive, i.e., PR(

∧
i ϕi) =

⋂
i PR(ϕi)

3. (Safety Preservation) If ϕ is a safety property, so is PR(ϕ)

The closure property relies on the reflexivity and transitivity of exp , and that
[R] is monotonic for every R. Conjunctivity follows from the conjunctivity of [R]
for any R. Safety preservation is based on the Alpern-Schneider [4] formulation
of safety over infinite words. Proofs are in the full version of the paper.

Conjunctivity is exploited by the tools Acacia+ [8] and Unbeast [11] to opti-
mize the synchronous synthesis procedure. The Unbeast tool also separates out



safety from non-safety sub-properties to optimize the synthesis procedure. Thus,
if a specification ϕ has the form ϕ1 ∧ ϕ2, where ϕ1 is a safety property, then
PR(ϕ) = PR(ϕ1) ∩ PR(ϕ2) also denotes the intersection of the safety property
PR(ϕ1) with another property.

3.3 The Closure Automaton Construction

By negation duality, PR(ϕ) equals ¬〈 exp 〉(¬ϕ). We use this property to reduce
asynchronous to synchronous synthesis, as follows.

1. Construct a non-deterministic Büchi automaton A for ¬ϕ,
2. Transform A to a non-deterministic Büchi automaton B for the negated

Pnueli-Rosner closure of ϕ, i.e., the language ofB is 〈 exp 〉L(A) = 〈 exp 〉(¬ϕ),
3. Consider the structure of B as that of a universal co-Büchi automaton, which

has language ¬L(B),
4. Synthesize an implementation f in the synchronous model which satisfies
¬L(B) = ¬〈 exp 〉L(A) = ¬〈 exp 〉(¬ϕ) = [ exp ]ϕ = PR(ϕ).

The new step is the second one, which constructs B from A; the others use
standard constructions and tools. This construction is as follows.

– The states and alphabet of B are the states and alphabet of A.
– The transitions of B are determined by a saturation procedure. For every

pair of states q, q′, and letter (x, y), let Π(q, (x, y), q′) be the set of paths
in A from q to q′ where the sequence of letters on the path matches the
expansion pattern (⊥, y)∗(x, y)(⊥, y)∗. The transition (q, (x, y), q′) is in B if,
and only if, this set is non-empty,

– If some path in Π(q, (x, y), q′) passes through a green (accepting) state of A,
the transition (q, (x, y), q′) in B is colored “green” and that path is assigned
as the witness to the transition in B. On the other hand, if none of the paths
in Π(q, (x, y), q′) pass through a green state, this transition is not colored in
B, and one of the paths in the set is chosen as the witness for this transition,

– The automaton B inherits the accepting (“green”) states of A and it may
have, in addition, green transitions introduced as defined above,

– A sequence is accepted by B if there is a run of B on the sequence such
that either there are infinitely many green states, or infinitely many green
transitions on that run.

We establish that L(B) = 〈 exp 〉L(A) through the following two lemmas.

Lemma 1. 〈 exp 〉L(A) ⊆ L(B).

Proof. Let δ = (x0, y0)(x1, y1) . . . be a sequence in 〈 exp 〉L(A). By definition,
there exists a sequence σ in L(A) such that δ expσ. The expansion σ follows
the pattern [(⊥, y0)∗(x0, y0)(⊥, y0)∗][(⊥, y1)∗(x1, y1)(⊥, y1)∗] . . ., where [. . .] are
used merely to indicate the boundaries of a block. An accepting run of A on σ
has the form q0[(⊥, y0)∗(x0, y0)(⊥, y0)∗]q1[(⊥, y1)∗(x1, y1)(⊥, y1)∗]q2 . . ., where
the states on the run inside a block have been elided. By the definition of B,



the segment q0(⊥, y0)∗(x0, y0)(⊥, y0)∗q1 induces a transition from q0 to q1 in B
on the letter (x0, y0). Similarly, the following segment induces a transition from
q1 to q2 on letter (x1, y1), and so forth. These transitions together form a run
q0(x0, y0)q1(x1, y1)q2 . . . of B on δ.

If one of the {qi} is green and appears infinitely often on the run on σ, the
induced run on δ is accepting. Otherwise, as the run on σ is accepting, some green
state of A occurs in the interior of infinitely many segments of that run. The
transitions of B induced by those segments must be green, so the corresponding
run on δ has infinitely many green edges, and is accepting for B. ut

Lemma 2. L(B) ⊆ 〈 exp 〉L(A).

Proof. Let δ be accepted by B. We show that there is σ such that δ expσ and σ
is accepted by A. Let δ have the form (x0, y0)(x1, y1) . . . ,. Denote the accepting
run of B on δ by r = q0(x0, y0)q1(x1, y1) . . .. From the construction of B, the
transition from q0 to q1 on (x0, y0) has an associated witness path through A
from q0 to q1, which follows the expansion pattern (⊥, y0)∗(x0, y0)(⊥, y0)∗ on
its edge labels. Stitching together the witness paths for each transition of r, we
obtain both a sequence σ that is an expansion of δ and a run r′ of A on σ.

As r is accepting for B, it must enter infinitely often either a green state or a
green edge. If it enters a green state infinitely often, that state appears infinitely
often on r′. If r enters a green edge infinitely often, the witness path for that
edge contains a green state of A, say q; as this path is repeated infinitely often
on σ, q appears infinitely often on r′. In either case, a green state of A appears
infinitely often on r′, which is therefore, an accepting run of A on σ. ut

Automaton B can be placed in standard form by converting its green edges
to green states as follows, forming a new automaton, B̂. Form a green copy of
the state space, i.e., for each state q, form a green variant, G(q), which is marked
as an accepting state. Set up transitions as follows. If (q, a, q′) is an original non-
green transition, then (q, a, q′) and (G(q), a, q′) are new transitions. If (q, a, q′)
is an original green transition, then (q, a,G(q′)) and (G(q), a,G(q′)) are new
transitions. This at most doubles the size of the automaton. It is straightforward
to establish that L(B) = L(B̂).

3.4 Symbolic Construction

The symbolic construction of B̂ closely follows the definitions above. It is easily
implemented with BDDs representing predicates on the input and output vari-
ables x and y. The crucial step is to use fixpoints to formulate the existence of
paths in the set Π used in the definition of B. These definitions are similar to
the fixpoint definition of the CTL modality EF. We use A(q, (x, y), q′) to denote
the predicate on (x, y) describing the transition from q to q′ in automaton A.

Fixed don’t-care path. Let EfixedY(q, y, q′) hold if there is a path of length 0 or
more from q to q′ in A where the value of y is fixed. This is the least fixpoint
(in Z) of the following implications:



– (q′ = q) ⇒ Z(q, y, q′), and
– (∃x, r : A(q, (x, y), r) ∧ Z(r, y, q′)) ⇒ Z(q, y, q′)

The predicate A⊥(q, y, r) = (∃x : A(q, (x, y), r)) is pre-computed. Then, the least
fixpoint is computed iteratively as follows.

EfixedY0(q, y, q′) = (q = q′)

EfixedYi+1(q, y, q′) = EfixedYi(q, y, q′) ∨ (∃r : A⊥(q, y, r) ∧ EfixedYi(r, y, q′))

Let predicate greenA(r) be true for an accepting state r of A. The predicate
Efixedgreen(q, y, q′) holds if there is a fixed y-path from q to q′ where one of the
states on it is green:

Efixedgreen(q, y, q′) = (∃r : EfixedY(q, y, r) ∧ greenA(r) ∧ EfixedY(r, y, q′))

Paths and Green Paths. Let Epath(q, (x, y), q′) hold if there is a path following
the block pattern (⊥, y)∗(x, y)(⊥, y)∗ from q to q′ in A. Then,

Epath(q, (x, y), q′) = (∃r, r′ : EfixedY(q, y, r) ∧ A(r, (x, y), r′) ∧ EfixedY(r′, y, q′))

Similarly, let Egreenpath(q, (x, y), q′) hold if there is a path following the block
pattern (⊥, y)∗(x, y)(⊥, y)∗ from q to q′ in A, with an intermediate green state.

Egreenpath(q, (x, y), q′) =

(∃r, r′ : Efixedgreen(q, y, r) ∧ A(r, (x, y), r′) ∧ EfixedY(r′, y, q′))∨
(∃r, r′ : EfixedY(q, y, r) ∧ A(r, (x, y), r′) ∧ Efixedgreen(r′, y, q′))

State space of B̂. The state space of B̂ is formed by pairs (q, g), where q is a
state of A and g is a Boolean indicating whether it is a new green state. The
accepting condition greenB̂(q, g) of B̂ is given by greenA(q) ∨ g.

Initial states. The initial predicate IB̂(q, g) is IA(q)∧¬g, where IA(q) is true for
initial states of the input automata A.

Transition relation of B̂. The transition relation B̂((q, g), (x, y), (q′, g′)) is

B̂((q, g), (x, y), (q′, g′)) = Epath(q, (x, y), q′) ∧ (g′ ≡ Egreenpath(q, (x, y), q′))

4 Implementation and Experiments

The PR algorithm has been implemented in a framework called BAS (Bounded
Asynchronous Synthesis). It uses the LTL-to-automaton converter LTL3BA [3,6],
and follows the modular method, connecting to either of two solvers, BoSy [2,12]
and Acacia+ [1,8] to solve the synchronous realizability of PR(ϕ). The PR con-
struction is implemented in about 1200 lines of OCaml, using an external BDD
library. (The core construction requires only about 400 lines of code.) For an
LTL specification ϕ, the BAS workflow for asynchronous synthesis is as follows:



Specification Asyn. PR Asyn. synthesis

realizable? constr. BoSy Acacia+

1 � (x ≡ y) false 8 972 30

2 ♦� x ≡ ♦� y false 9 Na Na

3 ♦� x ⇒ ♦� y true 8 899 Na

4 ♦� y ⇒ ♦� x true 7 994 Na

5 (♦� x ∨ ♦�¬x) ⇒ ♦� x ≡ ♦� y true 13 1004 Na

6 � (¬x ⇒ (¬x) U (¬y)) ⇒ ♦� x ≡ ♦� y true 10 Na Na

7 �♦ (x ∧ y) ⇒ (�♦ y ∧ �♦¬y) true 9 1053 30

8 �♦ (x ∨ y) ⇒ (�♦ y ∧ �♦¬y) true 9 995 40

9 �♦ (x) ⇒ (�♦ y ∧ �♦¬y) true 8 934 30

10 � (x ⇒ ♦ y) true 8 960 30

11 � (x ⇒ ♦ y) ∧ � (¬y U x) false 10 1058 Na

Variants of parameterized arbiter (results shown are for n = 2; 4; 6)

12
∧

i6=j � (¬gi ∨ ¬gj) ∧ true 11; 854; Na;∧n
i=1 � (ri ⇒ ♦ gi) 13; 1146; Na;

75 4965 Na

13
∧

i6=j � (¬gi ∨ ¬gj) ∧ false 17; 1129; Na;∧n
i=1 � (ri ⇒ ♦ gi) ∧

∧n
i=1 � (gi ⇒ ri) 3124; 362K; Na;

2024K Na Na

Table 1. BAS asynchronous synthesis runtime evaluation (times in milliseconds). We
let BoSy run upto 2 hours, and Acacia+ upto 1000 iterations. “Na” denotes cases where
the executions did not find a winning strategy within these boundaries.

1. Check whether ϕ is synchronously realizable; if not, return UNREALIZABLE,

2. Construct Büchi automata A for ¬ϕ, and Â for ϕ,

3. Concurrently

(a) Construct PR(ϕ) from A and check whether it is synchronously realiz-
able; if so, return REALIZABLE and synthesize the implementation.

(b) Construct PR(¬ϕ) from Â and check whether it is synchronously realiz-
able for the environment; if so, return UNREALIZABLE.

Upon termination of any, terminate the other execution as well.

The synchronous synthesis tools successively increase a bound until a limit (com-
puted based on automaton structure) is reached. Thus, in theory, only the check
in step 3(a) is needed. However, the checks in steps 1 and 3(b) may allow the
tool to terminate early (before reaching the limit bound), if a winning strategy
for the environment can be discovered.

To evaluate BAS we consider the list of examples presented in Table 1. The
reported experiments were performed on a VM configured to have 8 CPU cores
at 2.4GHz, 8GB RAM, running 64-bit Linux. The running times are reported in
milliseconds. For each specification (presented in the second column) we report
whether it is asynchronously realizable (third column), the time for the PR con-
struction (our contribution), and the time for checking whether the specification
is realizable using BoSy and Acacia+ solvers (resp., fifth and sixth columns).



The first set of examples (Specifications 1-11) list specifications discussed in
this paper and in related works. As parameterized example we consider 2 vari-
ants of arbiter specifications. The arbiter has n inputs in which clients request
permissions, and n outputs in which the clients are granted permissions. In both
variants of the arbiter example, no two grants are allowed to be set simulta-
neously. The first arbiter example (Specification 12) requires that whenever an
input request ri is set, the corresponding output grant gi must eventually be set.
The second variant (Specification 13) also requires that a grant gi is set only if
request ri is set as well. That is, in order for a client to be granted a permission,
its corresponding request must be constantly set. Since the asynchronous case
cannot observe the request in between read events, this variant of the arbiter is
not realizable. The results are shown for n = 2, 4, 6. Note that the only compara-
ble experimental evaluation is given in [18], where they report that asynchronous
synthesis of the first arbiter example (Specification 12) takes over 8 hours.

The second specification ϕ is the one discussed in Section 2. It is surpris-
ingly difficult to solve. Both ϕ and its negation are asynchronously unrealizable.
Moreover, ϕ is synchronously realizable. Thus, the early detection tests (steps 1
and 3(b)) failed to discover a winning strategy for the environment; the bounded
synthesis tools increase the considered bound monotonically without converging
to an answer in a reasonable amount of time. This example highlights the need
for better tests for unrealizability. The results in the following section provide
simple QBF tests of unrealizability for subclasses of LTL.

5 Efficiently Solvable Subclasses of LTL

The high complexity of direct LTL (synchronous) synthesis has encouraged the
search for general procedures that work well in practice, such as Safraless and
bounded synthesis [24,35]. Another useful direction has been to identify frag-
ments of LTL with efficient synthesis algorithms [5]. Among the most notewor-
thy is the GR(1) subclass, for which there is an efficient, symbolic synthesis
procedure ([28]). We explore this direction for asynchonous synthesis. Surpris-
ingly, we show that synthesis for certain fragments of LTL can be reduced to
Boolean reasoning over properties in QBF. The results cover several types of
GR(1) formulae, although the question of a reduction for all of GR(1) is open.

The QBF formulae that arise have the form ∃y∀x.p(x, y), where x and y
are disjoint sets of variables, and p is a propositional formula over x, y. An
assignment y = b for which ∀x.f(x, b) holds is called a witness to the formula.
The first such reduction is for the property �♦P .

Theorem 4. ϕ = �♦P is asynchronously realizable iff ∃y∀xP is True.

Proof. (ping) Let b be a witness to ∃y∀x.P . The function that constantly outputs
y = b satisfies ϕ for any asynchronous schedule.

(pong) Let f be a candidate implementation function and suppose that
∀y∃x(¬P ) holds. Fix any schedule. For every value y = b that function f outputs
at a writing point, there exists an input value x = a such that ¬P (a, b) holds.



Thus, the environment, by issuing x = a in the interval from the current writing
point (with y = b) up to the next one, can ensure that ¬P holds throughout the
execution. Thus the specification ϕ = �♦P does not hold on this execution. ut

The result in Theorem 4 applies to asynchronous synthesis, but does not
apply to synchronous synthesis. For example, the property �♦ (x ≡ y) is asyn-
chronously unrealizable, as ∃y∀x(x ≡ y) is False. On the other hand, it is syn-
chronously realizable with a Mealy machine that sets y to x at each point.

Theorem 4 extends easily to conjunction and disjunction of �♦ properties.

Theorem 5. Specification ϕ =
∨m

i=0 �♦Pi is asynchronously realizable iff
∃y∀x.(

∨m
i=0 Pi) holds. Additionally, specification ϕ =

∧m
i=0 �♦Pi is asynchronously

realizable iff for all i ∈ {0, 1 . . .m}, ∃y∀x.Pi holds.

Proof. The first claim follows directly from the identity
∨m

i=0 �♦Pi ≡ �♦ (
∨m

i=0 Pi)
and Theorem 4.

For the second, for each i, let y = bi be an assignment such that ∀x.Pi(x, bi)
holds. The function that generates sequence b0, b1, . . . bm, ad infinitum, is an
asynchronous implementation of

∧m
i=0 �♦Pi. On the other hand, suppose that

for some i, ∀y∃x¬Pi holds, then following the construction from Theorem 4, one
can define an execution where Pi is always False. ut

Theorem 6. ϕ = ♦�P is asynchronously realizable iff ∃y∀x.P is True.

The proof is similar to that for Theorem 4. Theorem 6 also extends to con-
junctions and disjunctions of ♦� properties, by arguments similar to those for
Theorem 5. Namely,

∧m
i=0 ♦�Pi is asynchronously realizable iff ∃y∀x(

∧m
i=0 Pi) is

True, and,
∨m

i=0 ♦�Pi is asynchronously realizable iff for some i ∈ {0, 1, . . .m},
∃y∀x.Pi is True. Theorems 4 - 6 apply to non-atomic reads and writes of multiple
input and output variables. Proofs are in the full version of the paper.

We now consider a more general type of GR(1) formula. The strict semantic
of GR(1) formula �Se ∧ �♦P ⇒ �Ss ∧ �♦Q is defined to be �(�Se ⇒
Ss) ∧ (�Se ∧ �♦P ⇒ �♦Q) – i.e., Ss is required to hold so long as Se has
always held in the past; and if Se holds always and P holds infinitely often,
then Q holds infinitely often. This is the interpretation supported by GR(1)
synchronous synthesis tools.

Theorem 7. The strict semantics of GR(1) specification �Se∧�♦P ⇒ �Ss∧
�♦Q is asynchronously realizable iff ∃y∀x.(Se ⇒ (Ss ∧ (P ⇒ Q))) is True.

Proof. (ping) If y = b is a witness to ∃y∀x.(Se ⇒ (Ss ∧ (P ⇒ Q))), let f be a
function that always generates b. Suppose Se holds up to point i, then as y = b,
regardless of the x-value, Ss holds at point i. This shows that the first part of
the specification holds. For the second, suppose that Se holds always and P is
true infinitely often. Then, by choice of y = b, (P ⇒ Q) holds always, thus Q
holds infinitely often as well.

(pong) To prove the other side of the implication, we proceed as in Theo-
rem 4. Let f be a candidate implementation. Fix a schedule, and suppose that



∀y∃x.(Se ∧ (¬Ss ∨ ¬(P ⇒ Q))) holds. Then for every step of the execution
and for every value y = b that function f outputs at a writing point, there exists
a value x = a which the environment can choose from that writing point to the
next such that Se(a, b) is true, and one of Ss(a, b) or (P ⇒ Q)(a, b) is false at
every point in that interval.

On this execution, Se holds throughout. If Ss is false at some point, this
violates the first part of the specification. If not, then (P ⇒ Q) must be false
everywhere; i.e., at every point P is true butQ is false. Thus, Se holds everywhere
and P holds infinitely often but Q does not hold infinitely often, violating the
second part of the specification. ut

Theorem 7 applies to atomic reads and writes, showing that asynchronous
synthesis of GR(1) specification can be reduced to Boolean reasoning over prop-
erties in QBF. For non-atomic reads and writes, safety in asynchronous systems
is more nuanced, since there is a delay between the write points of the first and
last outputs in each round. This is discussed in the full version of the paper.
This result does not generalize easily to the full GR(1) format, where more than
one �♦ property can appear on either side of the implication.

These results establish that the asynchronous synthesis problem for such
specifications is easily solvable–more easily than in the synchronous setting, sur-
prisingly avoiding entirely the need for automaton constructions and bounded
synthesis. From another, equally valuable, point of view, the results show that
such types of specifications may be of limited interest for automated synthesis,
as solvable cases have very simple solutions.

6 Conclusions and Related Work

This work tackles the task of asynchronous synthesis from temporal specifica-
tions. The main results are a new symbolic automaton construction for gen-
eral temporal properties, and the reduction of the synthesis question for several
classes of specifications to QBF. These are mathematically interesting, being
substantial simplifications of prior methods. Moreover, they make it feasible to
implement an asynchronous synthesis tool following the modular process sug-
gested by Pnueli and Rosner in 1989, by reducing asynchronous synthesis to a
synchronous synthesis question. To the best of our knowledge, this is the first
such tool. The prototype, which builds on tools for synchronous synthesis, is able
to quickly synthesize asynchronous programs for several interesting properties.
There are, undoubtedly, several challenges that remain, one of which is the quick
detection of unrealizable specifications.

Our work builds upon several earlier results, which we discuss here. The
synthesis question for temporal properties originates from a question posed by
Church in the 1950s (see [37]). The problem of synthesizing a synchronous re-
active system from a linear temporal specification was formulated and studied
by Pnueli and Rosner [31], who gave a solution based on non-emptiness of tree
automata. There has been much progress on the synchronous synthesis question



since. Key developments include the discovery of efficient symbolic (BDD-based)
solutions for the GR(1) class [7,28], the invention of “Safraless” procedures [24],
the application of these ideas for bounded synthesis [15,35], and their implemen-
tation in a number of tools, e.g. [8,10,11,13,20,34]. These have been applied in
many settings (cf. [9,23,25,26,27]).

The problem of synthesizing asynchronous programs was also formulated and
studied by Pnueli and Rosner [32] but has proved to be much more challenging,
with only limited progress. The original Pnueli-Rosner constructions are complex
and were not implemented. Work by Klein, Piterman and Pnueli, nearly 20 years
later [22], shows tractability for some GR(1) specifications. However, the class
of specifications that can be so handled is characterized by semantic constraints
such as stuttering-closure and memoryless-ness, which are difficult to recognize.

Finkbeiner and Schewe [18,35] present an alternative method, based on bounded
synthesis, that applies to all LTL properties: it encodes the existence of a de-
ductive proof for a bounded program into SAT/SMT constraints. However, the
encoding represents inputs and outputs explicitly and is, therefore, exponential
in the number of input and output bits. The exponential blowup has practi-
cal consequences: an asynchronous arbiter specification requires over 8 hours to
synthesize [18]; the same specification can be synthesized by our method in sec-
onds. (Note, however, that the method in [18] is not specialized to asynchronous
synthesis, and this difference may not be solely due to the explicit state repre-
sentation, as the specification has only 4 bits.) Recent work gives an alternative
encoding of synchronous bounded synthesis into QBF constraints, retaining in-
put and output bits in symbolic form [12]. We believe that a similar encoding
applies to asynchronous bounded synthesis as well, this is a topic for future work.

Pnueli and Rosner’s model of interface communication is not the only choice.
Other models for asynchrony could, for instance, be based on CCS/CSP-style
rendezvous communication at the interface, or permit shared read-write variables
with atomic lock/unlock actions. Petri net game models have also been suggested
for distributed synthesis [16]. An orthogonal direction is to weaken the adversar-
ial power of the environment through a probabilistic model which can be used to
constrain unlikely, highly adversarial input patterns to have probability 0, thus
turning the synthesis problem into one where programs satisfy their specifica-
tions with high probability. (The synthesis of multiple processes is known to be
undecidable in most cases [17,33].)

In the broader context of fully automatic program synthesis, there are vari-
ous approaches to the synthesis of single-threaded, terminating programs from
formal pre- and post-condition specifications and from examples, using type in-
formation and other techniques to prune the search space. (We will not attempt
to survey this large field, some examples are [14,19,36].) An intriguing question is
to investigate how the techniques developed in these distinct lines of work can be
fruitfully combined to aid the development of asynchronous, reactive software.
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