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Abstract. The innovations in reactive synthesis from Linear Temporal
Logics over finite traces (LTLf) will be amplified by the ability to verify
the correctness of the strategies generated by LTLf synthesis tools. This
motivates our work on LTLf model checking. LTLf model checking, how-
ever, is not straightforward. The strategies generated by LTLf synthesis
may be represented using terminating transducers or non-terminating
transducers where executions are of finite-but-unbounded length or in-
finite length, respectively. For synthesis, there is no evidence that one
type of transducer is better than the other since they both demonstrate
the same complexity and similar algorithms.
In this work, we show that for model checking, the two types of trans-
ducers are fundamentally different. Our central result is that LTLf model
checking of non-terminating transducers is exponentially harder than
that of terminating transducers. We show that the problems are
EXPSPACE-complete and PSPACE-complete, respectively. Hence, consid-
ering the feasibility of verification, LTLf synthesis tools should synthesize
terminating transducers. This is, to the best of our knowledge, the first
evidence to use one transducer over the other in LTLf synthesis.

1 Introduction

Linear Temporal Logic over finite traces [13] (LTLf) is the finite-horizon coun-
terpart of the well-known Linear Temporal Logic (LTL) over infinite traces [23].
LTLf is rapidly gaining popularity among real-world applications where behav-
iors are better expressed over a finite but unbounded horizon [6, 10,11,18,34].

Reactive synthesis from LTLf specifications, or LTLf synthesis [2, 7, 9, 12,
14, 17, 28, 36] has amassed so much interest that the 2023 Reactive Synthesis
Competition (SYNTCOMP) will inaugrate an LTLf track5. Consequently, LTLf
synthesis tools have been growing in complexity [2, 8, 17, 28, 36]. Their correct-
ness, however, is rarely verified. To continue the innovations in synthesis and to

⋆ Work was performed while the author was at Rice University
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successfully conduct large-scale competitions like SYNTCOMP there is, there-
fore, a need to verify the correctness of the synthesized strategies/transducers.
Verifying the results as opposed to verifying the tools has been advocated in
various contexts, including translation validation [26], program checking [5], and
equivalence checking [21]. For LTL synthesis, result checking is simply LTL model
checking. For LTLf synthesis, we need LTLf model checking. But this is a topic
that has not been studied so far, hence this work.

We observe that LTLf model checking for LTLf synthesis tools is not as
straightforward as one might have thought to be. The standard approach in
the literature on LTLf synthesis generates non-terminating transducers. This in-
cludes the seminal work on synthesis [12] and the SYNTCOMP guidelines [19].
The executions of non-terminating transducers are of infinite length. Since LTLf
formulas are defined on finite traces only, an execution of a non-terminating
transducer is said to satisfy an LTLf formula if there exists a finite-length prefix
that satisfies the formula [12]. Few works on synthesis do mention the possibility
of terminating transducers as the output [2, 36]. Since their executions are of
finite length, LTLf satisfaction is defined naturally on terminating transducers.
When it comes to synthesis, there is no clear evidence that one type of transducer
is better than the other, since the complexity and algorithms of synthesis are
the same for both types. We believe this is why existing works on LTLf synthesis
do not make a clear distinction between the two. For implementations, how-
ever, most works use non-terminating transducers as they directly correspond
to standard Mealy/Moore machines (See state-of-the-art tools, e.g., Syft [36],
Lisa [2], and Lydia [8]). This work shows, however, that from the model-checking
perspective, the two types of transducers are fundamentally different and bear
a significant impact on synthesis.

Our central result is that LTLf model checking of non-terminating transduc-
ers is exponentially harder than LTLf model checking of terminating transducers.
We demonstrate that under LTLf specifications, model checking non-terminating
transducers is EXPSPACE-complete, whereas model checking terminating trans-
ducers is PSPACE-complete. An immediate implication of this result is that
for non-terminating transducers, LTLf model checking is exponentially harder
than LTL model checking, which is known to be PSPACE-complete [32]. This
result is unexpected because a factor behind the increasing popularity of LTLf
is the perception that problems using LTLf are at most as hard as those using
LTL, if not simpler (See Table 1). This is because LTLf formulas can be ex-
pressed by automata over finite words [13], which allow for practically scalable
algorithms for automata constructions [29]. Conversely, LTL formulas require au-
tomata over infinite words [35], for which the automata manipulation is harder in
theory [16,25,30,31] and in practice [15,20]. It is no wonder that an exponential
increase in the model-checking complexity seems surprising at first.

The exponential blow-up in LTLf model-checking of non-terminating trans-
ducers arises from subtlety in the problem definition. A transducer satisfies a
formula if there are no counterexamples. In non-terminating transducers, an
infinite execution is a counterexample if every finite prefix does not satisfy the
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Table 1: LTL vs. LTLf: Complexity w.r.t. specification. NT and T abbreviate
non-terminating and terminating models, respectively.

LTL LTLf

Non-deterministic Automata (NBA) Exponential (NFA) Exponential
Satisfiability PSPACE-complete [27] PSPACE-complete [13]
Synthesis 2EXPTIME-complete [24] 2EXPTIME-complete [12]

Model Checking (NT) PSPACE-complete [32] EXPSPACE-complete (New!)
Model Checking (T) Undefined PSPACE-complete (New!)

LTLf formula. Formally, for an LTLf formula ϕ, let pref(ϕ) represent the language
consisting of all infinite executions for which every prefix satisfies ϕ. Then, a non-
terminating transducerM satisfies an LTLf formula ϕ iff L(M) ∩ pref(¬ϕ) = ∅,
where L(M) is the set of all executions ofM. This is where LTLf model checking
fundamentally differs from LTL model checking, as counterexamples in LTL are
obtained simply from an automaton for the negation of the formula [32]. W.l.o.g.,
we show that while pref(ϕ) is ω-regular for all LTLf formulas ϕ, the size of their
non-deterministic Büchi automata (NBA) is doubly exponential in the size of

the formula, i.e., 22
O(|ϕ|)

and 22
Ω(
√

|ϕ|)
. Once again, this differs from LTL model

checking, where the size of the NBAs for counterexamples is singly exponential
in the size of the formula. As a result, we show LTLf model checking of non-
terminating transducers is in EXPSPACE using on-the-fly emptiness checking of
L(M) ∩ pref(¬ϕ). We establish EXPSPACE-hardness from first principles.

In contrast, we show that LTLf model checking of terminating transducers
is PSPACE-complete. Due to their finite-length executions, counterexamples in
terminating transducers are completely characterized by the negation of the
formula, lending the same complexity as LTL model checking.

Thus, our results offer a clear recommendation between the two types of
transducers in LTLf synthesis. We argue that synthesis tools should account for
the feasibility of the verification of the synthesized transducers. Consequently, we
recommend that synthesis tools should generate terminating transducers rather
than non-terminating transducers. We believe this is the first work to offer theo-
retical evidence to use one transducer over the other in synthesis. Furthermore,
these results could be applied immediately to run the LTLf track in SYNTCOMP.

Outline. Section 2 outlines preliminaries on LTLf and LTLf synthesis. Section 3
motivates and defines LTLf model checking. Section 4 is dedicated to pref(ϕ).
Section 5 develops the complexity of model checking. Lastly, Section 6 concludes.

2 Preliminaries and Notations

We use the standard notions of deterministic and non-deterministic finite au-
tomata (DFAs and NFAs, respectively) as well as deterministic and non-
deterministic Büchi automata (DBAs and NBAs, respectively). For an automa-
ton, we use the notation A = (Σ,S, ι, δ, F ) where Σ is a finite set of symbols
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(called an alphabet), S is a finite set of states, ι ∈ S is the initial state, F ⊆ S
is the set of accepting states, and δ ⊆ S × Σ × S is the transition relation. We
use standard semantics for all automata, hence defer details to the appendix.

2.1 Linear Temporal Logic over Finite Traces (LTLf)

LTLf [1, 13] extends propositional logic with finite-horizon temporal operators.
In effect, LTLf is a variant of LTL [23] that is interpreted over finite rather than
infinite traces. The syntax of an LTLf formula over a finite set of propositions
Prop is identical to LTL, and defined as

φ := true | false | a ∈ Prop | ¬φ | φ1 ∧ φ2 | Xφ | φ1Uφ2

where X (Next) and U (Until), are temporal operators. We also include their
dual operators, N (Weak Next) and R (Release), defined as Nφ ≡ ¬X¬φ and
φ1Rφ2 ≡ ¬(¬φ1U¬φ2). We also use typical abbreviations such as Fφ ≡ trueUφ,
Gφ ≡ falseRφ, φ1 ∨φ2 = ¬(¬φ1 ∧¬φ2), φ1 → φ2 ≡ ¬φ1 ∨φ2. We denote by |ϕ|
the length/size of a formula ϕ, i.e., the number of operators in ϕ.

The semantics of LTLf is similar to LTL but is interpreted over finite traces.
A finite sequence ρ over 2Prop is said to satisfy an LTLf formula ϕ over Prop,
denoted by ρ |= ϕ, if ρ, 0 |= ϕ where for all positions 0 ≤ i < |ρ|, ρ, i |= ϕ is
defined inductively on ϕ as follows:

– ρ, i |= true; ρ, i ̸|= false; ρ, i |= a iff a ∈ ρi
– ρ, i |= ¬φ iff ρ, i ̸|= φ
– ρ, i |= ϕ1 ∧ ϕ2 iff ρ, i |= ϕ1 and ρ, i |= ϕ2;
– ρ, i |= Xϕ iff i+ 1 < |ρ| and ρ, i+ 1 |= ϕ
– ρ, i |= ϕ1Uϕ2 iff there exists j s.t. i ≤ j < |ρ| and ρ, j |= ϕ2, and for all k,
i ≤ k < j, we have ρ, k |= ϕ1

Observe that X requires that there exists a next position; In the context of
finite traces, its negation also contains the situation that no next position exists,
formulated as ¬(Xtrue) or equivalently Nfalse. This differs from LTL where the
Next operator is applied to all positions. Also, note that LTLf formulas are
evaluated on traces of non-zero length.

The language of an LTLf formula ϕ over Prop is the set of all finite sequences ρ
over 2Prop such that ρ |= ϕ. The language of an LTLf formula is regular. The NFA
and DFA representing LTLf are of size singly exponential and doubly exponential,
respectively, in the size of the formula [13]. We note that a letter σ ∈ Σ of the
NFA/DFA corresponds to a valuation over the set Prop of propositions.

2.2 LTLf Synthesis and Transducers

Let LTLf formula ϕ be defined over propositional variables partitioned into I
and O representing the input and output variables, respectively. Given such an
LTLf formula ϕ, the problem of LTLf realizability is to determine whether there
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exists a strategy f : (2I)∗ → 2O such that for all λI = I0, I1, · · · ∈ (2I)ω, there is
an integer k ≥ 0 such that the finite trace ρ = (I0 ∪ f(ε)), (I1 ∪ f(I0)), · · · , (Ik ∪
f(I0, I1, · · · , Ik−1)) satisfies ϕ. The LTLf synthesis problem is to generate such
a function, if the given formula is realizable [12]. Intuitively, LTLf synthesis
can be viewed as a game between two agents, an environment and a system,
who continually take turns to assign values to the input and output variables,
respectively, to generate a sequence of input and output variables. W.l.o.g., we
assume the system plays first, followed by the environment, and so on. The goal of
synthesis is to generate a strategy for the system agent so that all resulting plays
with the environment satisfy the given specification. We note that our model-
checking results also hold when the environment plays first, as we will model
strategies as transition systems in model checking for generality (cf. Section 3).

Non-terminating transducers. The standard in LTLf synthesis is to represent
the strategy f using (non-terminating) transducers [12,19]. W.l.o.g., a transducer
is a Moore machineM = (Q, q0, I,O, δ, G) where Q is a finite set of states, q0 ∈
Q is the initial state, and I and O are finite sets of input and output variables,
respectively. Functions δ : Q × 2I → Q and G : Q → 2O are the transition
function and the output function, respectively. Given an input sequence λI =
I0, I1, · · · ∈ (2I)ω, the output sequence is λO = G(q0), G(q1), · · · ∈ (2O)ω where
q0 is the initial state and qi+1 = δ(qi, Ii) for all i ≥ 0.

Then, given an LTLf formula with variables partitioned into I and O the
realizability and synthesis problem is to generate a Moore machineM such that
for all input sequences λ = I0, I1, · · · ∈ (2I)ω, there exists an integer k ≥ 0 such
that ρ = (I0, G(q0)), (I1, G(q1)) . . . (Ik, G(qk)) satisfies ϕ. Intuitively, the system
and environment play indefinitely, where the system plays as per the transducer.
The play (an execution in the transducer) satisfies an LTLf formula if there exists
a finite-length prefix that satisfies the formula.

Terminating transducers. The strategy f can also be represented using
terminating transducers [2, 36]. W.l.o.g., a terminating transducer is a Ter-
minating Moore machine M = (Q, q0, I,O, δ, G, F ) where Q, q0, I, O, δ,
and G are as defined for Moore machines and ∅ ≠ F ⊆ Q are the terminal
states. An input sequence λI = I0, I1, · · · Ik ∈ (2I)∗ generates an output se-
quence λO = G(q0), G(q1), . . . G(qk) ∈ (2O)∗ where q0 is the initial state and
qi+1 = δ(qi, Ii) for all 0 ≤ i < k.

Then, given an LTLf formula with variables partitioned into I and O, the
realizability and synthesis problem is to generate a terminating Moore machine
M such that for all input sequence λ = I0, I1, · · · ∈ (2I)ω, there exists an integer
k ≥ 0 such that ρ = (I0, G(q0)), (I1, G(q1)) . . . (Ik, G(qk)) with qk+1 = δ(qk, Ik) ∈
F and ρ satisfies ϕ. Intuitively, the synthesized terminating transducer is such
that as soon as a play lands in a terminal state of the transducer, the system
agent controlling the output variables wins the game and this play is over as it is
guaranteed that the play seen so far satisfies the given formula. On the contrary,
in non-terminating transducers, the system agent does not have the ability to
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terminate a game as it is never informed of whether it has seen a satisfying
prefix.

3 LTLf Model Checking

In addition to being of independent interest, our motivation behind LTLf model
checking is to support the ongoing development of LTLf synthesis tools. As syn-
thesis tools continue to become more complex, it is imperative that we design
automatic approaches to check their correctness. One way is to evaluate whether
the result generated from these tools is correct. In the case of LTLf synthesis,
result checking corresponds to LTLf model checking. Finally, an immediate ap-
plication of LTLf model checking could be in running the inaugural LTLf track
in the Reactive Synthesis Competition (SYNTCOMP) [19].

We begin by defining the model-checking problem. As described in Sec-
tion 2.2, the result of LTLf synthesis could be a terminating or a non-terminating
transducer. Since LTLf satisfaction on executions in the two types of transducers
differ, we define model-checking on them separately. For the sake of generality,
we define model-checking with respect to transition systems (TS) as opposed to
transducers. Translations from transducers to transition systems are standard
and polynomial [22]. Hence, the translation details have been omitted.

Non-Terminating Transition Systems are those that run indefinitely, i.e.,
their executions are of infinite length (e.g. network servers). Formally, a non-
terminating TS is a structure M = (Σ,S, T, ι, L), where Σ is a finite proposi-
tional alphabet, S is a finite set of states, relation T ⊆ S × S is the transition
relation with no sink states, ι is the initial state, and L : S → 2Σ is the labeling
function. An execution ρ = s0s1 · · · inM is an infinite sequence of consecutive
states beginning with the initial state, i.e., s0 = ι and (si, si+1) ∈ T for all i ≥ 0.
The label sequence of ρ is the sequence L(ρ) = L(s0)L(s1) · · · . The n-length
finite prefix of ρ and its label sequence are given by ρ[0, n] = s0 · · · sn−1 and
L(ρ[0, n]) = L(s0) · · ·L(sn−1), respectively, for n > 0.

Since executions are of infinite-length and LTLf formulas are interpreted over
finite-length sequences only, we say an execution ρ in M satisfies an LTLf for-
mula ϕ, denoted by ρ |=M, as follows

ρ |= ϕ iff ∃n > 0 s.t. L(ρ[0, n]) |= ϕ,

i.e., there exists a finite-length prefix of the execution that satisfies the formula.

Terminating Transition Systems are those that terminate after a finite but un-
bounded amount of steps (e.g. a terminating program). Formally, a terminating
TS is given by a structureM = (Σ,S, T, ι, L, F ), where Σ, S, T ⊆ S×S, ι, and
L : S → 2Σ are defined as for nonterminating transition systems and ∅ ≠ F ⊆ S
are the terminal states, which are the only states that are allowed to be sink
states. An execution ρ = s0 · · · sn inM is a finite sequence of consecutive states
beginning with the initial state and ending in a terminal state, i.e., s0 = ι and
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(si, si+1) ∈ T for all 0 ≤ i < n, and sn ∈ F . Its label sequence is the sequence
L(ρ) = L(s0) · · ·L(sn).

An execution ρ inM satisfies an LTLf formula ϕ, denoted by ρ |= ϕ,

ρ |= ϕ iff L(ρ) |= ϕ.

Model Checking. We first define satisfaction and then model checking.

Definition 1 (M |= ϕ). Given a non-terminating (resp., terminating) transi-
tion system M and an LTLf formula ϕ, we say TS M satisfies ϕ, denoted by
M |= ϕ, if for all (resp., finite) executions ρ ofM, we have that ρ |= ϕ.

Definition 2 (Model Checking). Given a non-terminating (resp. terminat-
ing) transition system M and an LTLf formula φ, the problem of LTLf model
checking of non-terminating (resp. terminating) models is to determine whether
M satisfies φ.

Note on abuse of notation. The notation |= has been overloaded to express
satisfaction at several occasions, namely, in LTLf semantics, in defining when
executions of non-terminating and terminating systems satisfy a formula, and
when a system satisfies a formula. We overload notation to avoid new symbols
for each case, as the context is clear from the L.H.S.

4 Prefix Language of LTLf Formulas

This section builds the basic blocks for LTLf model checking of non-terminating
systems. Recall from Section 3, an (infinite-length) execution in a non-
terminating system M violates an LTLf formula ϕ if all of its finite prefixes
violate ϕ. So, the counterexamples are captured by the language that accepts an
infinite word iff all of its finite prefixes violate ϕ (or satisfy ¬ϕ). We call this the
prefix language of an LTLf formula ¬ϕ. Then, clearly,M |= ϕ iff the intersection
of M with the prefix language of ¬ϕ is empty, making the prefix language a
basic block to model-check non-terminating systems.

We first observe that the prefix languages for LTLf formulas are ω-regular.
We then show that one can construct a DBA accepting the prefix language of
an LTLf formula, which incurs a doubly exponential blow-up (Section 4.1). One
may expect that the complexity of the construction can be improved if we target
at NBAs. We show, however, that the doubly exponential blow-up is not due
to a lack of better construction, but a fundamental trait of the problem itself
(Theorem 2). This is in contrast to the construction of NBA/NFA for LTL/ LTLf,
where only deterministic automata constructions incur doubly exponential blow-
ups and nondeterministic automata constructions incur singly exponential blow-
ups, hinting at the hardness of model checking. Finally, we identify a fragment
of LTLf formulas for which a singly exponential construction of NBAs for their
prefix languages can be obtained via a translation from LTLf to LTL (Section 4.2).
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4.1 Prefix Automata for LTLf

This section formally defines the prefix language/automata for LTLf formulas
and proves that their automata constructions involve an unavoidable double-
exponential blow-up. The upper and lower bounds are shown in Theorem 1 and
Theorem 2, respectively.

Definition 3 (Prefix Language). Given an LTLf formula ϕ, the prefix lan-
guage of ϕ, denoted by pref(ϕ), is such that an (infinite-length) word w ∈ pref(ϕ)
iff every finite prefix of w satisfies ϕ, i.e., ∀n > 0.w[0, n] |= ϕ.

Recall that the semantics of LTLf requires traces of non-zero length only (see
Section 2). So we only need n > 0, instead of n ≥ 0, ignoring the empty word.
By abuse of notation, we let pref(ϕ) denote both the prefix language and its
corresponding automaton, called the prefix automaton.

We start by showing pref(ϕ) is ω-regular for LTLf formula ϕ:

Theorem 1 (Prefix automata: Upper bound). For an LTLf formula ϕ,
the language pref(ϕ) is ω-regular. The Büchi automaton recognizing pref(ϕ) has

22
O(|ϕ|)

states.

Proof. Given LTLf formula ϕ, we construct a DBA for pref(ϕ) as follows:

1. Construct a DFA D = (Σ,Q, ι, δ, F ) for ¬ϕ, i.e., L(D) = L(¬ϕ).
We require D to be complete in the sense that for every state s and every
alphabet a ∈ Σ, there exists a successor t = δ(s, a).

2. Obtain a DBA C = (Σ,Q, ι, δ′, F ) by converting all accepting states F of D
to accepting sink states in C. For this, replace all outgoing transitions from
all accepting states in D with self loops on all letters.
Formally, replace every δ(f, a) = t in DFA D with f = δ′(f, a) in DBA C,
for all f ∈ F and a ∈ Σ. For all other states, let δ′ behaves identically to δ.

3. Obtain the desired Büchi automaton B = (Σ,Q, ι, δ′,F = Q \ F ) by swap-
ping accepting and non-accepting states of C.

Since C is a DBA with accepting sink states, C is the complement of B. Hence,
it suffices to show that C accepts w ∈ Σω iff there exists a finite prefix of w
that satisfies ¬ϕ. Clearly, w ∈ L(C) then w must have a finite-prefix satisfying
¬ϕ since the accepting states of C and D are identical. Conversely, we need to
show that despite δ and δ′ being different, C will accept all words that contain a
finite prefix satisfying ¬ϕ. For this, we show that for every such word, C retains
the transitions to accept the shortest prefix satisfying ¬ϕ. Details can be found
in the appendix. Finally, the number of states of C are bounded by those of D
which is doubly exponential in |ϕ| [13]. ⊓⊔

Observe that the Büchi automaton B constructed above is deterministic. One
of our key discoveries is that the doubly exponential blow-up appears even in
the construction of NBAs for pref(ϕ), demonstrating that the blow-up is funda-
mentally unavoidable. Theorem 2 presents such an LTLf formula to demonstrate
the blow-up. The rest of the section builds up to that construction.
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We observe that the blow-up is caused by the combination of two aspects:
First is the universal quantification on prefixes of words in pref(ϕ); Second is the
ability of an LTLf formula to identify the k-th last positions of finite words using
the X (Next) modality. At first, we identify an ω-regular language, parameterized
with n ≥ 1, such that all NBAs accepting the language have at least 22

n

states.
Let n ∈ N and Σ = {0, 1,#,&}. Consider the language Ln ⊆ Σω where

u ·& · v ∈ Ln s.t. if #w# appears in v then #w# also appears in u,

where w ∈ {0, 1}n, u ∈ {0, 1,#}∗ and v ∈ {0, 1,#}ω. Intuitively, Ln consists of
infinite words that are (a) split into two parts by a special character “&” and
(b) all words of the form #w# appearing after “&” must have appeared before
“&”, for all n-length words w ∈ {0, 1}n. Essentially, Ln is a bit-level adaption
of the language Kd where x · & · y ∈ Kd if digits appearing in y are a subset
of digits appearing in x, where x ∈ D∗ and y ∈ Dω for D = {0, 1, · · · , d − 1}.
Obviously, the words 14&1 and 134&4 are good prefixes of a word x ·& · y ∈ Kd

when d > 5. There are also less obvious good prefixes, such as a permutation
of D followed by the letter &. We need to recognize all good prefixes in order
to accept the language Kd. So, it is necessary to keep track of the digits (i.e.,
subsets of D) that the automaton has seen so far in an input word. Hence, the
NBA of Kd needs 2Ω(d) states. The same proof can be adapted to show that the

NBA of Ln consists of 22
Ω(n)

states. We defer a full proof to the supplemental
material.

Next, we need to identify a regular language Fn such that, by abuse of nota-
tion, pref(Fn) corresponds to Ln and Fn can be represented by an LTLf formula
of polynomial length in the parameter n > 0. A natural choice would be to let
Fn to be the finite-word version of Ln. In other words, u · & · v ∈ Fn s.t. if
#w# appears in v then #w# must have appeared in u for all w ∈ {0, 1}n and
u, v ∈ {0, 1,#}∗. The issue is that Fn cannot be represented by a short LTLf
formula for the same reason why Ln cannot be expressed by a short LTL formula.

We need Fn to be a simpler language. The roadmap would be to leverage the
universal quantification over all prefixes to generate Ln. This is also where we
leverage the ability of LTLf to refer to the last k-th positions of a finite trace.
Keeping these goalposts, we define regular language Fn ⊆ Σ∗ as

u ·& · v ∈ Fn s.t. if the last n+ 2 characters of v are of the form #w#

then #w# also appears in u,

where w ∈ {0, 1}n and u, v ∈ {0, 1,#}∗. Intuitively, by applying universal quan-
tification on all finite-length prefixes, focusing on the last n + 2 characters of
words in Fn is sufficient to ensure that every occurrence of the form #w# after
the symbol “&” appears in the portion before the “&”.

There is one last caveat. There are infinitely many prefixes of words in Ln that
may not contain the symbol &. This issue can be easily remedied by including
words without symbol & to both languages. We overload the notation of pref(L)
to refer to the prefix language of a language over finite words L. Then,
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Lemma 1. Let Ln and Fn be as defined above. Then

Ln ⊎ {0, 1,#}ω = pref(Fn ⊎ {0, 1,#}∗).

Proof (Proof Sketch). To see why Ln⊎{0, 1,#}ω ⊆ pref(Fn⊎{0, 1,#}∗), observe
that the prefixes of a word w ∈ Ln ⊎ {0, 1,#}ω either contain the symbol & or
they don’t. If the prefix falls under the latter, then the prefix is contained in
{0, 1,#}∗. Otherwise, if the last n + 2 characters are not in the form #w# for
w ∈ {0, 1}n then the prefix is contained in Fn by definition of Fn. If the last
n+ 2 characters are in form #w# for w ∈ {0, 1}n, then, by properties of words
in Ln, #w# must have appeared before &. Once again, the prefix is contained
in Fn. Thus, all prefixes of w are contained in Fn ⊎ {0, 1,#}∗.

The converse, i.e., pref(Fn ⊎ {0, 1,#}∗) ⊆ Ln ⊎ {0, 1,#}ω, can be proven by
a similar case-by-case analysis. Details can be found in the appendix. ⊓⊔

The last piece is to show that the language Fn ⊎ {0, 1,#}∗ can be expressed
using an LTLf formula ϕn of length polynomial in n, as shown below:

Theorem 2 (Prefix automata: Lower bound). There exists an LTLf for-

mula ψ such that the number of states in all NBAs for pref(ψ) is 22
Ω(
√

|ψ| )

.

Proof. Let n ∈ N\{0} and Σ = {0, 1,#,&}. Let Ln and Fn be as defined above.

Since all NBAs of Ln are of size 22
Ω(n)

and Ln is disjoint from {0, 1,#}ω by
containing the “&” symbol, it is easy to show that all NBAs of Ln ⊎ {0, 1,#}ω

require 22
Ω(n)

states as well.
From Lemma 1, it is sufficient to show that Fn⊎{0, 1,#}∗ can be represented

by an LTLf formula of length O(n2). So, let us construct the desired LTLf formula
ϕn. By abuse of notation, let the propositions be given by Prop = {0, 1,#,&}
with the interpretation that the symbol holds when its proposition is true. Recall
that a letter σ in the finite alphabet Σ corresponds to a valuation over the
atomic propositions Prop. For instance, & ∈ Σ is interpreted as the valuation
¬0 ∧ ¬1 ∧ ¬# ∧& over Prop. Then, the LTLf formula ϕn is a conjunction of the
following three:

(R1). At all times, only one proposition can be true.
(R2). If “&” holds at some place, it occurs exactly once.
(R3). If “&” holds at some place, then if the end of the word has the form #w#,

for w ∈ {0, 1}n, #w# must have appeared before “&”.

The LTLf formulation of (R1), denoted by OnlyOneProp, is quite straightforward
and has been deferred to the supplementary material. The formulation of (R2)
is F&→ ExactOne&, where ExactOne& expresses that “&” occurs exactly once:

ExactOne& := (¬&U(& ∧ (¬(Xtrue) ∨X(G¬&)))).

Intuitively, the “&” symbol is not seen until it is seen somewhere, after which ei-
ther the trace terminates (i.e., ¬(Xtrue) holds) or the trace does not see “&” glob-
ally (i.e., X(G¬&) holds). In fact, we also have ¬(Xtrue)∨X(G¬&) ≡ N(G¬&).
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To express (R3), we first introduce two formulas. The first is EndWith#w#
to express that the end of the word has the form #w#. The second is
End#w#AppearsBefore& to express that the word #w# must appear before
“&”. So, (R3) is expressed by

F&→ (EndWith#w#→ End#w#AppearsBefore&)

For EndWith#w#, we introduce shorthands, namely Ends := Xn+1(¬(Xtrue)),
and Appear#w# := #∧Xn+1#∧

∧n
i=1 X

i(0∨ 1). Note that Ends is true only at
the (n+2)-th last position of a trace and Appear#w# enforces that the current
and next n+ 1 positions have the form #w# for w ∈ {0, 1}n. Then,

EndWith#w# := G(Ends→ Appear#w#)

Also, End#w#AppearsBefore& :=

F
(
Appear#w# ∧ F& ∧

n∧
i=1

[(Xi0 ∧G(Ends→ Xi0)) ∨ (Xi1 ∧G(Ends→ Xi1))]
)

Intuitively, when defining End#w#AppearsBefore&, we assume that we are
standing at the first position of a word of the form #w# that appears before
“&”. So, we require that Appear#w# holds and later F& holds. Next, we require
the same word w to appear at the end. So we require that if in the i-th position,
0 (resp. 1) holds, at the i-th position from where Ends holds, 0 (resp. 1) must
also hold. This is formulated as (Xi0∧G(Ends→ Xi0))∨(Xi1∧G(Ends→ Xi1)).

Finally, the whole formula ϕn is given as follows:

ϕn = OnlyOneProp

∧ (F&→ (ExactOne& ∧ ((EndWith#w#→ End#w#AppearsBefore&))))

Clearly, when F& does not hold, all words satisfying ϕn would be in
{0, 1,#}ω. If F& holds, then all words should meet (R2) and (R3). One can
easily verify that ϕn specifies the language Fn ⊎ {0, 1,#}∗. Thus, pref(ϕn) =
Ln ⊎ {0, 1,#}ω.

Last but not the least, the length of ϕn is in O(n2) since
End#w#AppearsBefore& has length of O(n2). ⊓⊔

Note that the LTLf formulation makes heavy use of Ends, which in turn uses
the X modality. Essentially, Ends serves as a unique identifier of a specific position
at the end of all traces. This enables us to anchor at that location without any
artificial constructs and to express the desiderata accordingly. This is a crucial
difference between LTLf and LTL.

4.2 Prefix automata for LTLf Fragment

In this section, we show that a singly exponential construction of NBAs is possi-
ble for a fragment of LTLf formulas. Through an exposition of the prefix language
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for fragments of LTLf, we highlight some of the peculiarities of the prefix lan-
guage. Consider the fragment of LTLf, denoted as LTLf\{R,∨}, which permits all
but the R (Release) modality and allows ¬ and ∨ on literals only, as defined
below:

ψ := ℓ | ¬ℓ | ψ ∧ ψ | Xψ | Nψ | Fψ | Gψ | ψUψ

where ℓ := a ∈ Prop | ¬a | ℓ ∧ ℓ | ℓ ∨ ℓ. We show that the prefix language of
this fragment is equivalently represented by an LTL formula of the same size,
hence its NBA is singly exponential in the size of the formula. The said LTL
formula can be obtained using the translation t : LTLf\{R,∨} → LTL described
below (Since LTL and LTLf share the same syntax, to avoid confusion, we add
the subscript ∞ to temporal operators in LTL, indicating that we have |ρ| =∞.
For instance, Globally in LTL becomes G∞):

– t(ℓ) = ℓ, t(¬ℓ) = ¬ℓ
– t(Xψ) = false, t(Nψ) = X∞t(ψ)
– t(ψ1 ∧ ψ2) = t(ψ1) ∧ t(ψ2)

– t(Fψ) = t(ψ)
– t(ψ1Uψ2) = t(ψ2)
– t(Gψ) = G∞(t(ψ))

The insight behind this translation is to identify that the criteria for a formula
to hold on all finite-length prefixes simplifies to the formula holding on a prefix
of length one. The proof is presented below:

Lemma 2. Let ϕ ∈ LTLf\{R,∨} and let LTL t(ϕ) be as defined above. Then,
L(t(ϕ)) = pref(ϕ) and O(|ϕ|) = O(|t(ϕ)|).

Proof. Trivially, O(|ϕ|) = O(|t(ϕ|) holds. We prove that L(t(ϕ)) = pref(ϕ) by
structural induction on ϕ. In the interest of space, we skip the base cases (ℓ and
¬ℓ). We also skip the ∧ and G modalities, as they are intuitive. We present the
argument for X, N, F, and U. The full proof has been deferred to the appendix.

We set up notations: for w = w0w1 · · · ∈ Σω, let w[i, j] = wi · · ·wj−1 denote
subsequences of w for 0 ≤ i < j. So, w[0, n] is the n-length prefix of w for n > 0.
By inductive hypothesis (I.H.), we assume L(t(γ)) = pref(γ) for γ ∈ {ψ,ψ1, ψ2}.

Case Fψ: The critical observation is that for Fψ to hold on all finite pre-
fixes, Fψ must hold on the prefix of length 1, which in turn is possi-
ble only if the first position of the word satisfies ψ. Formally, first we
show that pref(Fψ) ⊆ L(t(Fψ)). Let w ∈ pref(Fψ). Then, in particular
w[0, 1] |= Fψ. This is possible only if w[0, 1] |= ψ. Thus, for all n > 0,
we get w[0, n] |= ψ. So, w ∈ pref(ψ). By I.H., w ∈ L(t(ψ)). By transla-
tion, this means w ∈ L(t(Fψ)). Next, we show L(t(Fψ)) ⊆ pref(Fψ). Let
w ∈ L(t(Fψ)). By translation, w ∈ L(t(ψ)). By I.H., w ∈ pref(ψ). Now, if ψ
holds, then Fψ also holds for all non-zero lengths. Hence, w ∈ pref(Fψ).

Case ψ1Uψ2: As earlier, the critical observation is for ψ1Uψ2 to hold on a prefix
of length one. For this, ψ2 must hold. The proof is similar to the earlier case.

Case Xψ: The issue is that Xψ can never be true on a word of length one, since
there does not exist a next position on length one words. Hence, pref(Xψ) =
∅ = L(False) = L(t(Xψ)).
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Case Nψ: N (Weak Next) doesn’t have the issue faced by X. If a word is of
length one, Nψ trivially holds. For words of all other lengths, it requires Xψ to
hold. Formally, first we show that pref(Nψ) ⊆ L(t(Nψ)). Let w ∈ pref(Nψ).
Then, by semantics of LTLf, it follows that the second position on w must
satisfy ψ, i.e., w[1, 2] |= ψ. In particular, for all i > 1, w[1, i] |= ψ. So,
w[1,∞] ∈ pref(ψ). By I.H., w[1,∞] ∈ L(t(ψ)). Hence, w ∈ L(X∞t(ψ)) =
L(t(Nψ)). Conversely, let w ∈ L(t(Nψ)). By translation, w ∈ L(X∞t(ψ)).
Hence, by I.H., we get for all i > 1, w[0, i] |= Xψ and w[0, 1] |= Nψ since
w[1,∞] ∈ L(t(ψ)) = pref(ψ). In other words, w ∈ pref(Nψ).

⊓⊔

An immediate consequence of Lemma 2 is that the prefix automata for
LTLf\{R,∨} are singly exponential in the size of the formula [33]:

Corollary 1. Let ϕ ∈ LTLf\{R,∨}. The NBA for pref(ϕ) contains 2O(|ϕ|) states.

Note that, in all the cases above, every conjunct holds on all finite prefixes.
This may not be true if ∨ (or) is permitted in the formula. For example, consider
ϕ = Ga ∨ Fb. Now, the word w = {a}{b}{}ω ∈ pref(ϕ) since the prefix of
length one satisfies Ga and all other prefixes satisfy Fb. Hence, with disjunction,
different prefixes can satisfy different disjuncts. In fact, the LTL formula for
pref(ϕ) is aU∞b ∨ G∞a. However, such translations may increase the formula
length because of duplicating the formula under G∞ modality. An open problem
here is to identify the largest fragment for which the prefix automata have only
singly exponential blow-up. This goes hand-in-hand with uncovering the core
behind the doubly exponential blow-up for prefix automata.

5 Complexity of LTLf Model Checking

We present the complexity of LTLf model checking. Section 5.1 develops the lower
bound for model checking non-terminating systems and Section 5.2 presents the
completeness argument for both terminating and non-terminating systems.

5.1 EXPSPACE Lower Bound for Non-terminating Systems

We prove EXPSPACE-hardness of LTLf model checking of non-terminating
systems by a polynomial-time reduction from the problem of whether an
exponential-space Turing machine T = (Q,Γ, δ, q0, F ) accepts an input word
x = x1 . . . xn. The components of the Turing machine are defined as follows:

– Q is the set of states and q0 ∈ Q is the initial state.
– Γ is the tape alphabet, which is assumed to include the blank symbol ∅.
– δ : Q× Γ → Q× Γ × {←,→} is the transition function. δ(q, γ) = (q′, γ′, d)

means that if the machine is in state q and the head reads symbol γ, it moves
to state q′, writes symbol γ′, and moves the head in direction d.

– F ⊆ Q is the set of accepting states. The machine accepts if it reaches a
state in F .
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Since T is an exponential-space Turing machine, we can assume that its tape
has 2cn cells, where n is the size of the input and c is a constant.

High-Level Idea Given a Turing machine T and an input x, our reduction will
construct a non-terminating system M and an LTLf formula φ s.t. T accepts x
iff every execution of M has a finite prefix that satisfies φ, i.e., M |= φ.

In this reduction, we will encode runs of the Turing machine as label se-
quences of the system. A cell in the tape is encoded as a sequence of cn + 1
propositional assignments. The first assignment encodes the content of the cell,
which can be either a symbol γ ∈ Γ or a symbol γ along with a state q ∈ Q, the
latter indicating that the head is on that cell and is in state q. The remaining cn
assignments encode the position of the cell in the tape as a cn-bit number (since
the tape has 2cn cells). The concatenation of 2cn cells encodes a configuration
of the Turing machine. Therefore, each configuration is encoded by 2cn(cn+ 1)
assignments in total. The concatenation of configurations encodes a run of the
Turing machine. Note, however, that for such a run to be consistent with the
run of T on x, certain consistency conditions must hold:

1. For every configuration, the encoding of the position of the first cell must be
0, and the encoding must increase by 1 for each successive cell.

2. The first configuration must start with x on the tape and the head on the
first cell and in the initial state q0.

3. Successive configurations must be consistent with the transition function δ.

One way is to enforce all consistency conditions through the systemM . How-
ever, since each configuration consists of 2cn cells, this would require the system
to have an exponential number of states. Therefore, to allow for a polynomial
reduction, we enforce the consistency conditions through the formula φ.

For this, we construct an LTLf formula φ := φcons → φacc. where φcons ex-
presses the the consistency conditions and φacc expresses the property of reaching
an accepting configuration. Therefore, every execution with a finite prefix that
satisfies φ is either inconsistent or an accepting run of T on x. Since T is deter-
ministic, there is exactly one execution of M that is consistent with T . Every
other execution will necessarily satisfy ¬φcons, and this execution will satisfy
φacc if and only if T accepts x. Therefore, if every execution of M has a finite
prefix that satisfies φ, then the run of T on input x is accepting, and vice-versa.

We now provide the details of the system M and the formula φ.

Atomic Propositions The propositions used by system M are the following:

– part0 indicates that the current assignment represents the first part of the
cell encoding, encoding the cell’s content.

– parti, for 1 ≤ i ≤ cn, indicates that the current assignment represents the
i-th bit of the encoding of the cell’s position. Only one of part0, . . . , partcn
is true at any given time.
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– cellλ, for λ ∈ Γ ∪ (Q× Γ ), indicates that the content of the cell is λ (a tape
symbol with or without the head). This proposition can only be true if part0
is true.

– bit gives the current bit of the cell’s position. This proposition can only be
true if part0 is false.

The Model We define the transition system M = (Σ,S, T, ι, L) as follows:

– Σ = {part0, . . . , partcn} ∪ {cellλ | λ ∈ Γ ∪ (Q× Γ )} ∪ {bit}
– S = {(0, λ) | λ ∈ Γ ∪ (Q× Γ )} ∪ {(i, b) | 1 ≤ i ≤ cn, b ∈ {0, 1}}
– ι = (0, (q0, ∅))
– (s, s′) ∈ T if and only if one of the following is true (for some λ, b, b′):

• s = (0, λ) and s′ = (1, b).
• s = (i, b) for 1 ≤ i < cn, and s′ = (i+ 1, b′).
• s = (cn, b) and s′ = (0, λ).

– L((0, λ)) = {part0, cellλ}
– L((i, b)) = {parti} ∪ {bit | b = 1}

The propositional alphabet Σ consists of the set of propositions described
above. The states of the M are either of the form (0, λ), where λ is the content
of a cell, or (i, b) for 1 ≤ i ≤ cn, where b is the current bit in the encoding of the
cell’s position. The initial state is (0, (q0, ∅)), indicating that a) this is the first
part of the cell’s encoding, b) the head is on this cell, c) the machine is in the
initial state q0, and d) the cell is blank (this should be the cell immediately to
the left of the input word x).

The transition relation ensures only that the system progresses consistently
from part 0 of the encoding to part 1, part 2, part 3, and so on until part cn,
after which it resets back to part 0 (of the next cell). Note that the values of λ
and b are unconstrained, as these will be handled by the formula φ. Observe the
three consistency conditions required for runs of T are not wired into the model.

Finally, the labeling function L simply converts the state into an appropriate
propositional representation.

The Formula We now construct the LTLf formula φ over the propositional
alphabet Σ. As mentioned before, we want φ to be such that, if an execution of
the system M has a prefix that satisfies φ, then either that execution violates
a consistency condition or it is an accepting run. To achieve this, we construct
φ = ¬φcons ∨ φacc. φacc is defined as follows:

φacc =
∨
q∈F

∨
γ∈Γ

F cell(q,γ).

It is easy to see that an execution of M has a prefix that satisfies φacc iff that
execution reaches a state (0, (q, γ)) where q is an accepting state of T .

Meanwhile, we define φcons as a conjunction of formulas, such that if an
execution has a prefix that violates one of these formulas then the execution is
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inconsistent, and every inconsistent execution has a prefix that violates one of
these formulas. We classify these formulas into three groups, one for each of the
three consistency conditions described above:

(C1). Consistency within a configuration (the binary encoding of each cell’s posi-
tion is correct)

(C2). Consistency with the input word (the first configuration is correct)
(C3). Consistency with the transition function (every configuration follows from

the previous one)

The first two conditions (C1) and (C2) are relatively straightforward to en-
code as formulas of polynomial size. For details, refer to the appendix.

The third condition (C3) is where the biggest challenge lies. This condition
requires reasoning about changes from one configuration to the next. The dif-
ficulty lies in accessing the segment that represents the same cell in the next
configuration using a polynomial-sized formula. Recall that a cell is represented
by cn + 1 assignments in the trace and each configuration is composed of 2cn

cells. Since the size of each configuration is exponential, formulas may require
exponential size. For instance, if the segment representing a cell begins at as-
signment i in the trace, then the same cell in the next configuration will start at
assignment i+ 2cn(cn+ 1). Referring to this assignment directly in the formula
would require 2cn(cn+1) nested X operators. Alternatively, the cell in the next
configuration can be identified by being the first cell where the binary encoding
of its position on the tape is the same as the current cell. However, this may
require enumeration on all possible assignments of the cn+ 1 bits.

To circumvent this problem and compare corresponding cells in two different
configurations using a formula of polynomial size, we take advantage of the fact
that we are dealing with finite prefixes of the trace. The insight is that we can use
the last position in the trace as an anchor, so that instead of having to find the
cell in the next configuration with the same position encoding, we can instead
look at the last cell in the trace and test if a) it is in the next configuration,
and b) it has the same position encoding. Since the formula is checked for every
prefix, eventually we will find a prefix where this holds. We can then check if the
contents of the cells are consistent with the transition function.

We now go into details of the formula for (C3). Consistency condition (C3)
says that every configuration follows from the previous one according to T ’s
transition function δ. As mentioned before, to ensure that we get a formula of
polynomial size, the formula that we construct actually expresses the following
condition: for all cells c in the prefix, if the last cell cLast of the prefix is in
the same position as c but in the next configuration, then cLast follows from c
based on the transition function. Since the formula must hold for all prefixes, its
satisfaction implies the original consistency condition.

We start by defining the useful shorthand L−iϕ ≡ F(ϕ∧Xi−1¬X true), which
denotes that ϕ holds i positions before the end of the prefix (e.g. L−1ϕ means
that ϕ holds at the last position of the prefix). This is expressed by saying that
at some point in the future ϕ holds, and i − 1 positions after that is the last
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position of the prefix (by the semantics of LTLf, ¬X true only holds at the last
position). We then define the formula MatchLastCell, which checks if the cell c
in the current position corresponds to the last cell cLast of the prefix, as follows:

MatchLastCell ≡ part0 ∧ L−cnpart0 ∧
cn∧
i=1

(Xibit↔ L−cnXibit)

∧ X
(
¬NewConfigU

(
NewConfig ∧XG¬NewConfig

))
where NewConfig ≡ (part0∧

∧cn
i=1(X

i¬bit)) denotes the start of a new configura-
tion (a cell whose position in the tape is encoded as 0). MatchLastCell expresses
that (a) we are at the start of a cell c (part0); (b) the last cn positions of the prefix
encode another cell cLast (L

−cnpart0); (c) c and cLast are in the same tape po-
sition (

∧cn
i=1(X

ibit↔ L−cnXibit)); and (d) we start a new configuration exactly
once between c and cLast (X(¬NewConfigU(NewConfig∧XG¬NewConfig))). In
other words, c and cLast are the same cell in successive configurations. We can
then encode the consistency condition by the formula

G(MatchLastCell→ φδ) ∧G(MatchLastCell→ φ←δ )

∧ G(Xcn+1 MatchLastCell→ φ→δ ) ∧G(Xcn+1 MatchLastCell→ φ0
δ)

where each of φδ, φ
←
δ , φ→δ , and φ0

δ expresses one way in which the contents of
the cell c can change (or not change) in the next configuration:

– φδ expresses that if the head is on c (cell(q,γ)), then in cLast the head must
have moved to a different cell and written the appropriate symbol γ′ given
by the transition relation (L−cn cellγ′)

– φ←δ expresses that if the head is on the cell to the right of c (Xcn+1 cell(q,γ2)),
and the transition relation requires it to move left, then in the next config-
uration the head must have moved to cLast (L

−cn cell(q′,γ1)))

– φ→δ expresses that if the head is on the cell to the left of c (cell(q,γ1)), and the
transition relation requires it to move right, then in the next configuration
the head must have moved to cLast (L

−cn cell(q′,γ2)))

– Finally, φ0
δ expresses that if the head is neither on c nor on the cells adjacent

to it (cellγ1 ∧ Xcn+1 cellγ2 ∧ X2(cn+1) cellγ3), then the contents of the cell
don’t change (L−cn cellγ2)

Note that in the latter two formulas c is the cell to the right of the current
cell (Xcn+1 MatchLastCell) this is necessary so that φ→δ and φ0

δ can refer to the
cell to the left of c. Formula for φδ, φ

←
δ , φ→δ , and φ0

δ have been presented in the
appendix. The size of each formula is polynomial in the size of the transition
relation of the Turing Machine.

Theorem 3 (LTLf Model Checking. Lower bound). LTLf model checking
of non-terminating systems is EXPSPACE-hard.
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Proof. Let the non-terminating system M and LTLf formula φ = ¬φcons ∨ φacc
be as described above. We show that an exponential-space Turing machine T
accepts an input word x iff every execution of M has a finite prefix that satisfies
φ, i.e., M |= φ. Note that since T is deterministic, its execution on the input
word x is unique. Therefore, there is exactly one trace π of M that simulates
the execution of T on x. By construction, a trace has a finite prefix that satisfies
¬φcons iff that trace violates one of the consistency conditions. This holds for
every trace of M except π. So, because no finite prefix of π satisfies ¬φcons, M
model checks if and only if π has a prefix that satisfies φacc, which means that
π eventually reaches an accepting state. Since π simulates T on x, this happens
if and only if T accepts x. ⊓⊔

5.2 Final Complexity Results

Finally, we present the complexity of model-checking non-terminating systems:

Theorem 4 (MC. Non-terminating. Complexity). LTLf model checking of
non-terminating systems is EXPSPACE-complete.

Proof. Recall, a non-terminating system M satisfies an LTLf formula ϕ iff
L(M) ∩ pref(¬ϕ) = ∅. A naive algorithm would explicitly construct pref(¬ϕ)
and require doubly exponential space in the size of ϕ. Instead, the approach is
to construct pref(ϕ) on-the-fly in exponential space and simultaneously evalu-
ate the emptiness ofM∩ pref(¬ϕ). Given all three steps in the construction of
pref(ϕ) are amenable to on-the-fly constructions, this procedure follows standard
on-the-fly procedures [32]. Thus, LTLf model checking of non-terminating mod-
els is in EXPSPACE. Theorem 3 establishes the matching lower bound. ⊓⊔

This result is unexpected as it implies that LTLf model checking is exponen-
tially harder than LTL model checking for non-terminating systems, contrary to
the prior perception that problems in LTLf tend to be as hard if not easier than
their counterparts in LTL (See Table 1).

Next, we present the complexity of model-checking terminating systems:

Theorem 5 (MC. Terminating. Complexity). LTLf model checking of ter-
minating systems is PSPACE-complete.

Proof. Recall that a terminating system M satisfies an LTLf formula ϕ if every
execution of M satisfies ϕ. So, M |= ϕ iff L(M ∩ A¬ϕ) = ∅ where A¬ϕ is the
NFA for ¬ϕ. Since the NFA is exponential in the size of the LTLf formula [13], an
on-the-fly algorithm for non-emptiness checking of M ∩ A¬ϕ can be performed
in PSPACE. PSPACE-hardness can be proven by a trivial reduction from LTLf
satisfiability, which is PSPACE-complete [13]. ⊓⊔

For LTLf synthesis, these results imply that it is much harder to verify a
non-terminating transducer than a terminating transducer. Hence, to test the
correctness of an LTLf synthesis tool by verifying its output strategy, it would
be better for LTLf synthesis tools to generate terminating transducers. This, to
the best of our knowledge, is the first theoretically sound evidence to use one
transducer over the other in LTLf synthesis.
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6 Concluding Remarks

Motivated by the recent surge in LTLf synthesis tools that are rarely verified
for result correctness, this work is the first to investigate the problem of LTLf
model checking. Noting that LTLf synthesis can generate both terminating and
non-terminating transducers, we examine LTLf model checking for both pos-
sibilities. Our central result is that LTLf model checking of non-terminating
models is exponentially harder than terminating models. Their complexities are
EXPSPACE-complete and PSPACE-complete, respectively. This is surprising at
first as it implies that LTLf model checking is harder than LTLmodel checking for
non-terminating models, contrary to the expectation from prior comparisons be-
tween LTLf and LTL (See Table 1). In addition to being of independent interest,
our results immediately lend several broad impacts:

1. They present the first theoretical evidence for the use of terminating trans-
ducers to represent the synthesized strategies in LTLf synthesis, as it would
be easier to verify the correctness of the synthesized transducer.

2. Implementations of our LTLf model checking algorithms could be deployed
in large-scale competitions such as the LTLf track in SYNTCOMP 2023.

3. They invite further exploration into LTLf vs LTL, as it breaks the prior
perception that problems in LTLf are as hard if not simpler than their LTL
counterparts.

These results inspire future work in the development of practical tools for
model checking and synthesis as well as the development of LTLf model checking
in more complex domains such as probabilistic models or under asynchrony [3,4].
It would be interesting to see how the practical implementations compare for
LTLf model checking under terminating and non-terminating semantics, even
though terminating models are preferred in theory.
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Appendix

6.1 Automata over Finite and Infinite words

A (nondeterministic) automaton is a tuple A = (Σ,S, ι, δ, F ) where Σ is a finite
set of symbols (called an alphabet), S is a finite set of states, ι ∈ S is the initial
state, F ⊆ S is the set of accepting states, and δ ⊆ S ×Σ × S is the transition
relation. An automaton on finite words is called a nondeterministic finite-state
automaton (NFA), while an automaton over infinite words is called a nondeter-
ministic Büchi automaton (NBA). An NFA is said to be deterministic (DFA) if
for each state s and letter a, |{s′|(s, a, s′) ∈ δ for some s′}| ≤ 1. Deterministic
Büchi automata (DBAs) are defined analogously.

Let A be an NFA. For a finite word w = w0 · · ·wn ∈ Σ∗, a run of A over
w is a finite state sequence ρ = s0 . . . sn+1 ∈ S+ such that s0 = ι and for all
i ∈ {0, . . . n}, (si, wi, si+1) ∈ δ holds. A run ρ = s0 . . . sn+1 is an accepting run
if sn+1 ∈ F . A word w is accepted by A if A has an accepting run over w.

Let B be an NBA. Similarly, a run of B over an infinite word w = w0w1 · · · ∈
Σω is an infinite sequence ρ = s0s1 · · · ∈ Sω such that s0 = ι and for all i ∈ N,
(si, wi, si+1) ∈ δ. Let inf (ρ) denote the set of states that occur infinitely often
in run ρ. A run ρ is an accepting run in B if inf (ρ) ∩ F ̸= ∅. An infinite word w
is accepted by B if B has an accepting run over w.

We denote by L(B) (resp. L(A)) the set of all words accepted by B (resp. A).
It is known that NFAs/DFAs recognize exactly regular languages while NBAs
accept exactly ω-regular languages. In the remainder of the paper, we denote by
wi, i ≥ 0 the i-th element in the sequence w.

6.2 Semantics of LTLf and LTL

We first give the semantics of LTLf formulas. A finite sequence ρ over 2Prop is
said to satisfy an LTLf formula ϕ over Prop, denoted by ρ |= ϕ, if ρ, 0 |= ϕ where
for all positions 0 ≤ i < |ρ|, ρ, i |= ϕ is defined inductively on ϕ as follows:

– ρ, i |= true,
– ρ, i ̸|= false,
– ρ, i |= a iff a ∈ ρi where ρi is the i-th element of ρ for all 0 ≤ i < |ρ|,
– ρ, i |= ¬ϕ iff ρ, i ̸|= ϕ,
– ρ, i |= ϕ1 ∧ ϕ2 iff ρ, i |= ϕ1 and ρ, i |= ϕ2,
– ρ, i |= ϕ1 ∨ ϕ2 iff ρ, i |= ϕ1 or ρ, i |= ϕ2,
– ρ, i |= Xϕ iff i+ 1 < |ρ| and ρ, i+ 1 |= ϕ,
– ρ, i |= ϕ1Uϕ2 iff there exists j s.t. i ≤ j < |ρ| and ρ, j |= ϕ2, and for all k,
i ≤ k < j, we have ρ, k |= ϕ1,

– ρ, i |= Fϕ iff there exists j s.t. i ≤ j < |ρ| and ρ, j |= ϕ,
– ρ, i |= Gϕ iff for all j s.t. i ≤ j < |ρ|, ρ, j |= ϕ.

To obtain the semantics of LTL formulas, ρ must be an infinite sequence.
Thus, the length of ρ, denoted as |ρ|, is ∞. It actually means that we can just
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drop all restrictions that the integers need to be less than |ρ| meant for LTLf
semantics We use a subscript ∞ for all LTL modalities to distinguish with their
LTLf counterparts. For all positions i ≥ 0, ρ, i |= ϕ is defined inductively on ϕ
as follows:

– ρ, i |= true,
– ρ, i ̸|= false,
– ρ, i |= a iff a ∈ ρi where ρi is the i-th element of ρ for all i ≥ 0,
– ρ, i |= ¬ϕ iff ρ, i ̸|= ϕ,
– ρ, i |= ϕ1 ∧ ϕ2 iff ρ, i |= ϕ1 and ρ, i |= ϕ2,
– ρ, i |= ϕ1 ∨ ϕ2 iff ρ, i |= ϕ1 or ρ, i |= ϕ2,
– ρ, i |= X∞ϕ iff ρ, i+ 1 |= ϕ,
– ρ, i |= ϕ1U∞ϕ2 iff there exists j s.t. j ≥ i and ρ, j |= ϕ2, and for all k,
i ≤ k < j, we have ρ, k |= ϕ1,

– ρ, i |= F∞ϕ iff there exists j s.t. j ≥ i and ρ, j |= ϕ,
– ρ, i |= G∞ϕ iff for all j ≥ i s.t. j ≥ i, ρ, j |= ϕ.

6.3 Proof of Theorem 1

Theorem 1. For LTLf formula ϕ, let pref(ϕ) be as defined above. Then,

1. pref(ϕ) is a safety language.

2. pref(ϕ) is ω-regular. NBA representing pref(ϕ) consists of 22
O(|ϕ|)

states.

Proof of Theorem 1- 1. A language L ⊆ Σω is a safety language if for every
word w /∈ L there exists a finite-prefix u of w such for all y ∈ Σω the word
u · y /∈ L. Such prefixes are referred to as bad prefix.

Consider w ∈ Σω such that w /∈ pref(ϕ). By definition of pref(ϕ), there exists
an n > 0 s.t. the finite-prefix w[0, n] |= ¬ϕ. Clearly, every infinite extensions of
w[0, n] will also not be contained in pref(ϕ), i.e. for all y ∈ Σω, w[0, n]·y /∈ pref(ϕ).
Hence, pref(ϕ) is a safety language.

Proof of Theorem 1- 2. Given LTLf formula ϕ, the NBA for pref(ϕ) can be
constructed as follows:

1. Construct a DFA D = (Σ,Q, ι, δ, F ) for ¬ϕ, i.e., L(D) = L(¬ϕ).
We require D to be complete in the sense that for every state s and every
alphabet a ∈ Σ, there exists a successor t = δ(s, a).

2. Obtain a DBA C = (Σ,Q, ι, δ′, F ) by converting all accepting states F of D
to accepting sink states in C. For this, replace all outgoing transitions from
all accepting states in D with self loops on all letters.
Formally, replace every δ(f, a) = t in DFA D with f = δ′(f, a) in DBA C,
for all f ∈ F and a ∈ Σ. For all other states, let δ′ behaves identically to δ.

3. Obtain the desired NBA B = (Σ,Q, ι, δ′,F = Q \F ) by swapping accepting
and non-accepting states of C.
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Since C is a DBA with all accepting states as sink states, swapping accepting
and non-accepting states results in its complementation. Hence, it is sufficient
to show that L(C) accepts the complement of pref(ϕ). In other words, C accepts
w ∈ Σω iff there exists a finite-prefix of w that satisfies ¬ϕ. Clearly, w ∈ L(C)
then w must have a finite-prefix satisfying ¬ϕ since the accepting states of C
and D are identical and all but outgoing transitions from accepting states are
retained. Conversely, let w ∈ Σω such that it contains a finite prefix that satisfies
¬ϕ. Despite δ and δ′ being different, we need to show that w is accepted. Let v
be the shortest prefix of w satisfying ¬ϕ. Since D is a DFA, v has a unique run
in D. This run also appears in C because all transitions appearing in this run
in D are retained in C as none of them are outgoing transitions from accepting
states (if it weren’t so, then v would not have been the shortest prefix of w that
satisfies ¬ϕ). Further, since accepting states in C are sink states, w ∈ L(C).
Finally, the number of states of C are bounded by those of D which is doubly
exponential in |ϕ| [13]. ⊓⊔

6.4 Proof of Lemma 1

Lemma 1 Let Ln and Fn be as defined above. Then

Ln ⊎ {0, 1,#}ω = pref(Fn ⊎ {0, 1,#}∗).

Proof. First, we show that Ln ⊎ {0, 1,#}ω ⊆ pref(Fn ⊎ {0, 1,#}∗). Trivially, all
prefixes of words in {0, 1,#}ω are contained in {0, 1,#}∗ since “&” does not
appear in any of them. It remains to show that Ln ⊆ pref(Fn ⊎ {0, 1,#}∗).
Let u · & · v ∈ Ln. We establish that all prefixes of u · & · v are contained in
Fn ⊎ {0, 1,#}. We perform case analysis of prefixes:

1. When the prefix is a prefix of u. These prefixes are contained in {0, 1,#}∗
since “&” does not appear in the prefix.

2. When prefix of is of the form u ·&. Now, u ·& ∈ Fn since it contains exactly
one “&” and the end of u ·& is not in the form #w# for w ∈ {0, 1}n.

3. When prefix is of the form u·&·y but y does not end in #w# for w ∈ {0, 1}n.
For the same reason as above, u ·& · y ∈ Fn.

4. When prefix is of the form u · & · y and y ends in #w# for w ∈ {0, 1}n.
Since u ·& ·v ∈ Ln, we know that every #w# appearing in v “&” must have
appeared in u, for w ∈ {0, 1}n. Since y is a prefix of v and #w# is at the end
of y, we get that #w# must have also appeared in u. Hence, u ·& · y ∈ Fn.

Hence, Ln ⊎ {0, 1,#}ω ⊆ pref(Fn ⊎ {0, 1,#}∗).
Next, we prove pref(Fn ⊎ {0, 1,#}∗) ⊆ Ln ⊎ {0, 1,#}ω. First, observe that

for x ∈ pref(Fn ⊎ {0, 1,#}∗), x can contain at most one occurrence of “&”. By
case analysis:

1. If x does not contain “&”, then clearly, x ∈ {0, 1,#}ω.
2. Otherwise, the word is of the form u · & · v where u ∈ {0, 1,#}∗ and v ∈
{0, 1,#}ω. Either there are no occurrences of #w# in v, for w ∈ {0, 1}n. In
this case, u ·& · v ∈ Ln vacuously.
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Otherwise, there are occurrences of #w# in v. Let u ·& · y be an arbitrary
prefix of u·&·v that ends in #w#. Since u·&·y ∈ Fn⊎{0, 1,#}∗, u·&·y ∈ Fn.
Thus, #w# must have appeared in u as well. Finally, since there are only
finitely many possibilities of words of the form #w#, we conclude that every
occurrence of #w# in v must have also appeared in u. Hence, u ·& · v ∈ Ln.

Hence, pref(Fn ⊎ {0, 1,#}∗) ⊆ Ln ⊎ {0, 1,#}ω.
Therefore pref(Lψn) = Ln ⊎ {0, 1,#}ω. ⊓⊔

6.5 Encoding of (R1) from Theorem 2

OnlyOneProp := G(0→ ¬1 ∧ ¬& ∧ ¬#) ∧G(1→ ¬0 ∧ ¬& ∧ ¬#)

∧G(&→ ¬0 ∧ ¬1 ∧ ¬#) ∧G(#→ ¬0 ∧ ¬1 ∧ ¬&) ∧G(0 ∨ 1 ∨& ∨#).

6.6 Proof of Lemma 2

Lemma 2 Let ϕ ∈ LTLf\{R,∨} and let LTL t(ϕ) be as defined above. Then,
L(t(ϕ)) = pref(ϕ) and O(|ϕ|) = O(|t(ϕ)|).

Proof. Trivially, O(|ϕ|) = O(|t(ϕ|) holds. We prove that L(t(ϕ)) = pref(ϕ) by
structural induction on ϕ. Let w = w0w1 · · · ∈ Σω where wi is the i-th letter in
w. Recall, w[0, n] denotes the subsequence w0 · · ·wn−1 of w for n > 0. Then

– ϕ = ℓ (resp. ϕ = ¬ℓ). By definition, t(ϕ) = ℓ. It is trivial that w ∈ pref(ϕ) =
pref(ℓ) iff w ∈ L(ℓ) since either w0 |= ℓ or w0 ̸|= ℓ.

– ϕ = ψ1∧ψ2. Then t(ϕ) = t(ψ1)∧t(ψ2). Assume that w ∈ L(t(ψ1)∧t(ψ2)). By
LTL semantics, w ∈ L(t(ψ1)) and w ∈ L(t(ψ2)). It follows that w ∈ pref(ψ1)
and w ∈ pref(ψ2), based on induction assumption. It means that for all i > 0,
w[0, i] |= ψ1 and w[0, i] |= ψ2. Thus, w[0, i] |= ψ1 ∧ ψ2 for all i > 0. We then
have that w ∈ pref(ϕ).

Assume that w ∈ pref(ϕ) = pref(ψ1 ∧ ψ2). It follows that for all i > 0,
w[0, i] |= ψ1 ∧ ψ2, i.e., w ∈ pref(ψ1) and w ∈ pref(ψ2). By induction as-
sumption, we have that w ∈ L(t(ψ1)) and w ∈ L(t(ψ2)). Consequently,
w |= t(ψ1) ∧ t(ψ2), i.e., w ∈ L(t(ψ1) ∧ t(ψ2)).

– ϕ = Fψ. Then t(ϕ) = t(ψ). By induction assumption, we have that w ∈
pref(ψ) iff w ∈ L(t(ψ)).
Assume that w ∈ L(t(ϕ)) = L(t(ψ)), i.e., w ∈ pref(ψ). It follows that for ev-
ery i > 0, w[0, i] |= ψ. Obviously, for every i > 0, w[0, i] |= Fψ. Consequently,
w ∈ pref(ϕ).

Assume that w ∈ pref(ϕ). Then for every i > 0, w[0, i] |= ϕ = Fψ. By
semantics of LTLf, w[0, 1] |= ψ, i.e., w0 |= ψ. It follows that for every i > 0,
we also have that w[0, i] |= ψ, indicating that w ∈ pref(ψ). By induction
assumption, w ∈ L(t(ψ)) = L(t(ϕ)). So we are done for this case.
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– ϕ = ψ1Uψ2. Then t(ϕ) = t(ψ2). The proof is quite similar to the one for Fψ.
By induction assumption, we have that w ∈ pref(ψ2) iff w ∈ L(t(ψ2)).
Assume that w ∈ L(t(ϕ)) = L(t(ψ2)), i.e., w ∈ pref(ψ2). It follows that for
every i > 0, w[0, i] |= ψ2. Obviously, for every i > 0, w[0, i] |= ψ1Uψ2 since
w[0, 1] |= ψ2. Consequently, w ∈ pref(ϕ).
Assume that w ∈ pref(ϕ). Then for every i > 0, w[0, i] |= ϕ = ψ1Uψ2. By
semantics of LTLf, w[0, 1] |= ψ2, i.e., w0 |= ψ2. It follows that for every i > 0,
we also have that w[0, i] |= ψ2, indicating that w ∈ pref(ψ2). By induction
assumption, w ∈ L(t(ψ2)) = L(t(ϕ)). So we are done for this case.

– ϕ = Gψ. Then, t(ϕ) = G∞(t(ψ)). By induction assumption, we have that
we have that w ∈ pref(ψ) iff w ∈ L(t(ψ)).
Assume that w ∈ L(t(ϕ)) = L(G∞(t(ψ))). By semantics of LTL, for every
i ≥ 0, w[i,∞] ∈ L(t(ψ)). In other words, we have that w[i,∞] ∈ pref(ψ) for
all i ≥ 0. It follows that w[i, i+ 1] |= ψ for all i ≥ 0, according to definition
of pref languages. Then we have that w[0, i] |= Gψ for all i ≥ 0 in LTLf
semantics. Obviously, w ∈ pref(Gψ).
Assume that w ∈ pref(Gψ). By definition of pref languages, we have that
w[0, i] |= Gψ for all i > 0. By semantics of LTLf, we have wi |= ψ for all
i ≥ 0 (The last position of the word needs to satisfy ψ); Also, w[i, j] |= ψ for
all j > i. By definition of pref languages, we have that w[i,∞] ∈ pref(ψ) for
all i ≥ 0. Based on induction assumption, we have w[i,∞] ∈ L(t(ψ)) for all
i ≥ 0. It follows that w |= G∞t(ψ). Thus, we have done for this case.

– ϕ = Nψ. Then t(ϕ) = X∞t(ψ). By induction assumption, w ∈ pref(ψ) iff
w ∈ L(t(ψ)).
Assume that w ∈ pref(ϕ). Then w[0, i] |= Nψ for all i > 0, including i = 2. By
LTLf semantics, it follows that w[1, 2] |= ψ since w0 is not the last position
when i = 2. It follows that we have that w[1, i] |= ψ for all i > 1. So,
w[1,∞] ∈ pref(ψ), i.e., w[1,∞] ∈ L(t(ψ)) based on induction assumption.
Then we have w |= X∞t(ψ), i.e., w ∈ L(X∞t(ψ)).
Assume that w ∈ L(X∞t(ψ)). Then w[1,∞] |= t(ψ). By induction assump-
tion, we have w[1,∞] ∈ pref(ψ). It follows that w[1, 2] |= ψ by definition
of pref languages. Then w[0, 2] |= Nψ. Clearly, we have w[0, i] |= Nψ for all
i > 0, including when i = 1. Consequently, we have w ∈ pref(ϕ).

– ϕ = Xψ. Then t(ϕ) = false. It is impossible for a word w ∈ pref(Xψ) to
hold since w[0, 1] ̸|= Xψ as there is no next position at position 0. Therefore,
L(pref(ϕ)) = L(false) = ∅ since there are no words satisfying false.

⊓⊔

6.7 Missing details from Section 5.1

Consistency conditions (C1) and (C2) We present the encoding of the first
two consistency conditions (C1) and (C2). Recall, we require the following two:

(C1). Consistency within a configuration (the binary encoding of each cell’s posi-
tion is correct)

(C2). Consistency with the input word (the first configuration is correct)



Model Checking Strategies from Synthesis Over Finite Traces 27

Condition (C1) only needs to reason about adjacent cells in the same configu-
ration. If (b1, . . . , bcn) and (b′1, . . . , b

′
cn) are the binary encodings of the positions

of two adjacent cells, and Succ(b1, . . . , bcn, b
′
1, . . . , b

′
cn) is a propositional formula

capturing that (b′1, . . . , b
′
cn) encodes the successor (mod 2cn) of (b1, . . . , bcn) (see

below for details), then the formula

G
(
(part0 ∧X2cn+1 true)→ Succ(X1 bit, . . . ,Xcn bit,Xcn+2 bit, . . . ,X2cn+1 bit)

)
expresses that if we start at the beginning of the encoding of a cell (part0) and the
prefix is long enough to include the entirety of the successor cell (X2cn+1 true),
then Succ holds between the encodings of the two cells (note that bi is given
by Xi bit and b′i is given by Xcn+1+i bit). Similarly, the formula Xcn true →∧cn
i=1 X

i¬bit expresses that the encoding of the first cell’s position is 0.
Condition (C2) only requires looking at the n cell contents that should con-

tain the input word in the first configuration, plus ensuring that all other cells
on the tape are blank. Checking the cells that should contain the input word
can be expressed by the formula

X(cn+1)n true→
( n∧
i=1

X(cn+1)i cellxi

)
meaning that if the prefix is long enough to cover all n cells (X(cn+1)n true),

then the content of the i-th cell is xi (X(cn+1)i cellxi), for all i from 1 to n.
Ensuring that all other cells are blank can likewise be expressed by a formula of
polynomial size (see below for details).

Consistency within a configuration. As explained above, the first con-
sistency condition can be represented by a conjunction of the formula
Xcn true →

∧cn
i=1 X

i¬bit, which expresses that the encoding of the
first cell’s position is 0, and the formula G((part0 ∧ X2cn+1 true) →
Succ(X1 bit, . . . ,Xcn bit,Xcn+2 bit, . . . ,X2cn+1 bit)), which expresses that the en-
coded position of each successive cell is the successor of the previous one. The
propositional formula Succ can be defined as

Succ(b1, . . . , bcn, b
′
1, . . . , b

′
cn) = (b′1 ↔ ¬b1) ∧

cn∧
i=2

(b′i ↔ (bi ⊕ (bi−1 ∧ ¬b′i−1)))

which expresses the successor relation between two binary numbers bcn . . . b1 and
b′cn . . . b

′
1 (note that we consider b1 the least significant digit). The subformula

(b′1 ↔ ¬b1) expresses that the least significant digit is flipped, while (b′i ↔
(bi ⊕ (bi−1 ∧ ¬b′i−1))) (where ⊕ is the exclusive-or operator) expresses that the
i-th digit is flipped if there is a carry (which only happens when the (i − 1)-th
digit has flipped from 1 to 0).

Consistency with the input word. The second consistency condition is com-
posed of two formulas. As explained above, the formula X(cn+1)n true →
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i=1 X

(cn+1)i cellxi

)
expresses that the first n cells of the first configuration

contain the input word x = x1 . . . xn. The second formula ensures that all other
cells are blank, and can be expressed by

X(cn+1)(n+1) true→ X(cn+1)(n+1)
(
(part0 → cell∅)W

(
part0 ∧

cn∧
i=1

Xi¬bit
))

meaning that if the prefix is long enough to reach the (n + 1)-th cell

(X(cn+1)(n+1) true), the contents of every cell from this point on must be blank
(part0 → cell∅) until we reach a new configuration, indicated by the encoding of
the cell position resetting back to 0 (part0∧

∧cn
i=1 X

i¬bit). Note that the “zeroth”
cell (the cell where the head starts, immediately before the input word) is also
blank, but this is enforced by the transition relation of M .

Missing formulas for (C3)

– φδ expresses that if the head is on c (cell(q,γ)), then in cLast the head must
have moved to a different cell and written the appropriate symbol γ′ given
by the transition relation (L−cn cellγ′)

φδ ≡
∧
q∈Q

∧
γ∈Γ

(
cell(q,γ) → L−cn cellγ′

)
where δ(q, γ) = (q′, γ′, d)

– φ←δ expresses that if the head is on the cell to the right of c (Xcn+1 cell(q,γ2)),
and the transition relation requires it to move left, then in the next config-
uration the head must have moved to cLast (L

−cn cell(q′,γ1)))

φ←δ ≡
∧
q∈Q

∧
γ1∈Γ

∧
γ2∈Γ

((
cellγ1 ∧Xcn+1 cell(q,γ2)

)
→ L−cn cell(q′,γ1)

)
where δ(q, γ2) = (q′, γ′,←)

– φ→δ expresses that if the head is on the cell to the left of c (cell(q,γ1)), and the
transition relation requires it to move right, then in the next configuration
the head must have moved to cLast (L

−cn cell(q′,γ2)))

φ→δ ≡
∧
q∈Q

∧
γ1∈Γ

∧
γ2∈Γ

((
cell(q,γ1) ∧Xcn+1 cellγ2

)
→ L−cn cell(q′,γ2)

)
where δ(q, γ1) = (q′, γ′,→)

– Finally, φ0
δ expresses that if the head is neither on c nor on the cells adjacent

to it (cellγ1 ∧ Xcn+1 cellγ2 ∧ X2(cn+1) cellγ3), then the contents of the cell
don’t change (L−cn cellγ2)

φ0
δ ≡

∧
γ1∈Γ

∧
γ2∈Γ

∧
γ3∈Γ

((
cellγ1 ∧X

cn+1 cellγ2 ∧X
2(cn+1) cellγ3

)
→ L−cn cellγ2

)
Note that in the latter two formulas c is the cell to the right of the current

cell (Xcn+1 MatchLastCell) this is necessary so that φ→δ and φ0
δ can refer to the

cell to the left of c.
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6.8 NBA with at least 22n

states

Let n ∈ N and Σ = {0, 1,#,&}. Consider the language Ln ⊆ Σω where

u ·& · v ∈ Ln s.t. if #w# appears in u then #w# also appears in v,

where w ∈ {0, 1}n, u ∈ {0, 1,#}∗ and v ∈ {0, 1,#}ω. Essentially, Ln is a bit-
level adaption of the language Kd where x · & · y ∈ KD if digits appearing
in x are a subset of digits appearing in y, where x ∈ D∗ and y ∈ Dω for
D = {0, 1, · · · , d − 1}. We show that all NBA of Kd consists of at least 2D

states. This proof can easily be adapted to show that all NBA of Ln consists of

22
Ω(n)

states.
First, note that Kd is a safety ω-regular language. Let Cd be an (non-

deterministic Büchi) automaton representing Kd. Then, Cd can be trimmed by
removing all states that are unreachable from the initial state and at least one
accepting state. Next, all states of the trimmed automaton can be converted to
accepting states. Let us denote this automaton by Ad. Clearly, L(Ad) = L(Cd)
and Ad has fewer states than Cd.

We claim that Cd must have at least 2d states. Suppose there are fewer
than 2d states. We will use the notation xS and yT to denote finite and infinite
words over the digits D s.t. S and T denote the set of digits appearing in xS
and yT respectively. For a state Q in Ad with outgoing transitions on &, let
& · yT1

, . . .& · yTp be all the infinite words with paths starting in Q. Since all
paths are accepting (Ad is a safety automaton), all finite words to Q must be
of the form xS where S ⊆ T and T =

⋂p
i=1 Ti. Now, consider a word xT&yT .

We claim that all its accepting paths must pass through states of the form Q.
Suppose xT has a path to a state Q′ with an outgoing transition on &. Similar
to T for Q, let T ′ be defined for Q′. We assume T ′ ̸= T . Clearly, T ⊆ T ′, since
otherwise it would accept a word xT&yS where T ⊈ S. Furthermore, T ′ ⊆ T
since otherwise & · yT will not have a path from Q′. Hence, T = T ′. Hence, for
every S ⊆ D, Ad must have at least one unique state to accept words of the
form xS&yS . Thus, Ad must have at least 2D states. Subsequently, all automata
Cd of the language must contain at least 2D states.


