
Synthesis from Satisficing and Temporal Goals

Suguman Bansal,1 Lydia Kavraki, 2 Moshe Y. Vardi, 2 Andrew Wells 2,3

1 University of Pennsylvania
2 Rice University

3 Tesla

Abstract

Reactive synthesis from high-level specifications that com-
bine hard constraints expressed in Linear Temporal Logic
(LTL) with soft constraints expressed by discounted-sum
(DS) rewards has applications in planning and reinforcement
learning. An existing approach combines techniques from
LTL synthesis with optimization for the DS rewards but has
failed to yield a sound algorithm. An alternative approach
combining LTL synthesis with satisficing DS rewards (re-
wards that achieve a threshold) is sound and complete for in-
teger discount factors, but, in practice, a fractional discount
factor is desired. This work extends the existing satisficing
approach, presenting the first sound algorithm for synthesis
from LTL and DS rewards with fractional discount factors.
The utility of our algorithm is demonstrated on robotic plan-
ning domains.

1 Introduction
Reactive synthesis is the automated construction, from a
high-level description of its desired behavior, of a reactive
system that continuously interacts with an uncontrollable ex-
ternal environment (Church 1957).

Recent applications of reactive synthesis have emerged in
AI for planning and robotics tasks (Camacho, Bienvenu, and
McIlraith 2019; He et al. 2019; Kress-Gazit, Lahijanian, and
Raman 2018). These applications can be formulated as a
deterministic turn-based interaction between a controllable
system player and an uncontrollable environment player.
Given a specification, the synthesis task is to generate a sys-
tem strategy such that all resulting interactions with the en-
vironment satisfy the specification. A large focus in this line
of work has been on synthesis from Linear Temporal Logic
(LTL) specifications (Pnueli 1977; Pnueli and Rosner 1989).

Yet, several desired specifications either cannot be ex-
pressed using LTL or doing is cumbersome. Examples in-
clude specifications about the quantitative properties of sys-
tems, such as rewards, costs, degrees of satisfaction, and so
on. In fact, the combination of LTL with quantitative prop-
erties is used to express more nuanced and complex speci-
fications (see Figure 1). Subsequently, synthesis algorithms
from combination specifications have followed (Ding et al.
2014; He et al. 2017; Lahijanian et al. 2015).

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Example scenario: The (controlled) robot must re-
trieve objects and avoid the (uncontrolled) human in a gro-
cery store. The robot’s hard constraint is to retrieve objects
from its grocery list without colliding with the walls (in
grey) or human. Its soft constraint is to socially (Manhattan)
distance itself from the human. A fractional discount factor
makes the robot less “greedy.”

This work investigates the problem of reactive synthe-
sis from specifications that combine hard qualitative con-
straints expressed by LTL with soft quantitative constraints
expressed by discounted-sum rewards. Discounted-sum re-
wards are well-suited for infinite-horizon executions be-
cause the discounted-sum is guaranteed to converge on
infinite-sequence of costs whereas other aggregation func-
tions such as limit-average may not. Discounted-sum en-
codes diminishing returns. As a result, the combination of
LTL with discounted-sum rewards frequently appears in the
automated construction of systems using planning and re-
inforcement learning (Bozkurt et al. 2020; Camacho et al.
2017, 2019; Hasanbeig et al. 2019; Kalagarla, Jain, and
Nuzzo 2021; Kwiatkowska, Parker, and Wiltsche 2017).
Note, however, these works only deal with a single player
case (controllable system agent) while reactive synthesis
also assumes the presence of an uncontrollable environment.

Broadly speaking, there are two approaches to reactive
synthesis from LTL and discounted-sum rewards. The first
approach is based on optimization of the discounted-sum
reward. A strategy that optimizes the discounted-sum re-
ward alone is guaranteed to exist in deterministic, turn-
based settings (Shapley 1953). This existence guarantee,
however, is lost upon combination with LTL constraints.
For example, consider a two-state game where state s0
gives negative reward and state s1 positive. Each state
can transition to all other states. Our LTL objective is
(Globally Eventually s0). Clearly, there exists no strategy
that simultaneously maximizes the discounted-sum reward
and satisfies the LTL objective (Chatterjee et al. 2017). To

this end, an alternate synthesis task is to compute an opti-
mal strategy from those that satisfy the LTL constraint (Wen,
Ehlers, and Topcu 2015). Unfortunately, even here existing
synthesis algorithms may generate a sub-optimal strategy.
Overall, synthesis algorithms from LTL and discounted-sum
rewards that optimize the discounted-sum reward, in one
way or another, have hitherto failed to provide guarantees
of correctness or completeness.

The second approach to synthesis from LTL and
discounted-sum rewards is based on satisficing the
discounted-sum reward. A strategy is satisficing with re-
spect to a given threshold value v ∈ Q if it guarantees
the discounted-sum reward of all executions will exceed v.
The synthesis task, therefore, is to compute a strategy that
satisfies the LTL specification and is satisficing w.r.t. the
threshold value. The advantage of this approach is that when
the discount factor is an integer, an existing synthesis algo-
rithm is both sound and complete (Bansal, Chatterjee, and
Vardi 2021). The method builds on novel automata-based
technique for quantitative reasoning called comparator au-
tomata (Bansal, Chaudhuri, and Vardi 2018a,b). The central
result of comparator automata is that for integer discount
factors, examining whether the discounted-sum of an ex-
ecution exceeds a given threshold reduces to determining
the membership of the execution in an (Büchi) automaton.
Thus, satisficing goals are precisely captured by a compara-
tor. This insight allows for elegant combination of satisficing
and temporal goals since both are automata-based. The dis-
advantage of this method is that it cannot be applied with
non-integer discount factors since the comparator for non-
integer discount factors are not represented by automata.
This is a severe limitation because in practice the discount
factor is taken to be a fractional value between 1 and 2 in or-
der to reason over a long-horizon (Sutton and Barto 2018).
Consider Fig. 1. If an integer discount factor greater than 1
is used, the robot will be “greedy” and obtain the immediate
reward at the cost of becoming “trapped” by the human. The
fractional discount factor is necessary so the robot recog-
nizes the longer-term benefits to avoid becoming “trapped.”

The central contribution of this work is a theoretically
sound algorithm for reactive synthesis from LTL and sat-
isficing discounted-sum goals for the case when the dis-
count factor ranges between 1 and 2 (specifically of the form
1 + 2−k for positive integer values of k). To the best of our
knowledge, this is the first synthesis algorithm from LTL and
discount-sum rewards that offers theoretical guarantees of
correctness and is practically applicable.

Our solution is also based on comparator automata. We
bypass the issue with fractional discount factors by intro-
ducing approximations into the comparator framework. We
show that comparators for approximations of discounted-
sum with fractional discount factors can be represented by
Büchi automata. In brief, we show that for fractional dis-
count factors, examining whether the discounted-sum of an
execution approximately exceeds a threshold value can be
determined by membership of the execution in a Büchi au-
tomaton. This combined with synthesis techniques for LTL
gives rise to a purely automata-based algorithm for LTL and
discounted-sum rewards, and thus preserves soundness.

Due to the use of approximation, our algorithm is no
longer complete. To this end, we evaluate the practical util-
ity of our algorithm on case studies from robotics planning.
Our evaluation demonstrates that our sound but incomplete
procedure succeeds in efficiently constructing high-quality
strategies in complex domains from nuanced constraints.

2 Preliminaries
2.1 Automata and Formal Specifications
Büchi Automata and Co-Safety Automata. A Büchi au-
tomaton is a tuple A = (S , Σ, δ, sI , F), where S is a finite
set of states, Σ is a finite input alphabet, δ ⊆ (S ×Σ×S) is
the transition relation, state sI ∈ S is the initial state, and
F ⊆ S is the set of accepting states. A Büchi automaton is
deterministic if for all states s and inputs a, |{s′|(s, a, s′) ∈
δ for some s′}| ≤ 1. For a word w = w0w1 · · · ∈ Σω , a
run ρ of w is a sequence of states s0s1 . . . s.t. s0 = sI ,
and τi = (si, wi, si+1) ∈ δ for all i. Let inf (ρ) denote the
set of states that occur infinitely often in run ρ. A run ρ is
an accepting run if inf (ρ) ∩ F 6= ∅. A word w is an ac-
cepting word if it has an accepting run. Büchi automata are
closed under set-theoretic union, intersection, and comple-
mentation (Thomas, Wilke et al. 2002).

A co-safety automata is a deterministic Büchi automata
with a single accepting state. Additionally, the accepting
state is a sink state (Kupferman and Vardi 1999).

Comparator Automata. Given an aggregate function f :
Zω → R, equality or inequality relation R ∈ {<,>,≤,≥
,=, 6=}, and a threshold value v ∈ Q, the comparator au-
tomaton for f with upper bound µ, relation R, and thresh-
old v ∈ Q is an automaton that accepts an infinite word A
over the alphabet Σ = {−µ,−µ + 1, · · ·µ} iff f(A) R v
holds (Bansal, Chaudhuri, and Vardi 2018b,c).

The discounted-sum of an infinite-length weight-
sequence W = w0w1 . . . with discount factor d > 1 is
given by DS (W,d) =

∑∞
i=0

wi

di . The comparator automata
for the discounted-sum has been shown to be a safety or
co-safety automata when the discount factor d > 1 is an
integer, for all values of R, µ and v. It is further known to
not form a Büchi automata for non-integer discount factors
d > 1, for all values of R, µ and v (Bansal and Vardi 2019;
Bansal, Chatterjee, and Vardi 2021).

Linear Temporal Logic. Linear Temporal Logic (LTL)
extends propositional logic with infinite-horizon temporal
operators. The syntax of LTL is defined as ϕ := a ∈ AP |
¬ϕ | ϕ∧ϕ | ϕ∨ϕ | Xϕ | ϕUϕ | Fϕ | Gϕ. Here X (Next), U
(Until), F (Eventually), G (Always) are temporal operators.
The semantics of LTL can be found in (Pnueli 1977).

2.2 Two-Player Graph Games
Reachability Games. A reachability game G =
(V, vinit, E,F) consists of a directed graph (V,E), ini-
tial state vinit, and non-empty set of accepting states F ⊆ V .
The set V is partitioned into V0 and V1. For convenience,
we assume every state has at least one successor. A game is
played between two players P0 and P1.

A play in the game is created by the players moving a
token along the edges as follows: at the beginning, the token
is at the initial state. If the token’s current position v belongs
to Vi, then Pi chooses the next position from the successors
of v. Formally, a play ρ = v0v1v2 . . . is an infinite sequence
of states such that v0 = vinit and (vk, vk+1) ∈ E for all
k ≥ 0. A play is winning for player P1 in the game if it visits
an accepting state, and winning for player P0 otherwise.

A strategy for a player is a recipe that guides the player
on which state to go next to based on the history of a play.
A strategy is winning for a player Pi if for all strategies of
the opponent player P1−i, all resulting plays are winning
for Pi. To solve a graph game is to determine whether there
exists a winning strategy for player P1. Reachability games
are solved in O(|V |+ |E|) (Thomas, Wilke et al. 2002).

Quantitative Graph Games. A quantitative graph game
(quantitative game, in short) is given by G = (V = V0]
V1, vinit, E, γ,L, d) where V , V0, V1, vinit, E, plays, and
strategies are defined as earlier. Each edge is associated with
a cost determined by the cost function γ : E → Z, and
d > 1 is the discount factor. The cost-sequence of a play ρ
is the sequence w0w1w2 . . . where wk = γ((vk, vk+1)) for
all i ≥ 0, The cost of play ρ is the discounted-sum of its cost
sequence with discount factor d > 1. A labelling function
L : V → 2AP maps states to propositions from the set AP .
The label sequence of a play ρ is given by L(v0)L(v1)

3 Problem Formulation and Overview
The two players, the controllable system and uncontrollable
environment, interact in a domain described by a quantita-
tive gameG. The specification of the system player is a com-
bination of hard and soft constraints.

The hard constraint is given as by an LTL formula ϕ. A
play inG satisfies formula ϕ if its labelled sequence satisfies
the formula. We say, a strategy for the system player satis-
fies a formula ϕ if it guarantees that all resulting plays will
satisfy the formula. We call such a strategy ϕ-satisfying.

The soft constraints are given by satisficing goals. W.l.o.g,
the system and environment players maximize and minimize
the cost of plays, respectively. Given a threshold value v ∈
Q, a play is v-satisficing for the system (maximizing) player
if its cost is greater than or equal to v. Conversely, a play is
v-satisficing for the environment (minimizing) player if its
cost is less than v. A strategy is v-satisficing for a player if it
guarantees all resulting plays are v-satisficing for the player.

We are interested in solving the following problem:
Problem (Reactive Synthesis from Satisficing and Temporal
Goals). Given a quantitative game G, a threshold value v ∈
Q, and an LTL formula ϕ, the problem of reactive synthesis
from satisficing and temporal goals is to compute a strategy
for the system player that is ϕ-satisfying and v-satisficing
for the player, if such a strategy exists.

The problem is solved for integer discount fac-
tors (Bansal, Chatterjee, and Vardi 2021).

Algorithm Overview. In this paper, we extend to frac-
tional discount factors 1 < d < 2, yielding practical appli-
cations of the synthesis problem. In particular, we solve the

problem for d = 1 + 2−k where k > 0 is an integer. Since
the comparator for discounted-sum with fractional discount
factors are not representable by Büchi automata, we con-
struct a comparator automata for lower approximations of
discounted-sum. This comparator soundly captures the cri-
teria for v-satisficing for system player. In particular, if the
comparator accepts the weight sequence of a play, then the
play must be v-satisficing for the player. Therefore, just like
LTL goals, the satisficing goal is also soundly captured by
an automaton. Thus, we can reduce the synthesis problem
to parity games via appropriate synchronized product con-
structions of both the automata-based goals.

The comparator construction for approximation of
discounted-sum is presented in Section 4 and the reduction
to games on graphs is presented in Section 5.

4 Comparator Construction
This section develops the key machinery required to design
our theoretically sound algorithm for synthesis from tem-
poral and satisficing goals with fractional discount factors.
We construct comparator automata for a lower approxima-
tion of discounted-sum for fractional discount factors of the
form d = 1 + 2−k where k > 0 is an integer. We show these
comparators are represented by co-safety automata.

This section is divided in two parts. Section 4.1 defines an
aggregate function that approximates the discounted-sum.
Section 4.2 constructs a comparator for this function.

Unless stated otherwise, we assume the approximation
factor is of the form ε = 2−p where p > 0 is an integer.
Please refer to the Appendix for missing proofs and details.

4.1 Approximation of Discounted-Sum
Given parameters k, p > 0 of the discount factor and the
approximation factor, respectively, let roundLow(x, k, p) be
the largest integer multiple of 2−(p+k) that is less than or
equal to x, where x ∈ R. Let W [. . . n] denote the n-length
prefix of a weight-sequence W

Then, the lower approximation of discounted-sum of an
infinite-length weight-sequence W with discount factor d >
1 and approximation factor ε > 0 is defined as

DSLow(W,k, p) = lim
n→∞

gapLow(W [. . . n], k, p)

dn−1

where the lower gap value of a finite-length weight-
sequence U is defined as

gapLow(U, k, p) =

0, if |U | = 0

roundLow(d · gapLow(V, k, p) + v,

k, p), if U = V · v

Finally, the definition of DSLow is completed by prov-
ing DSLow approximates the discounted-sum of sequences
within an additive factor of d · ε:
Theorem 1. Let d = 1 + 2−k be the discount factor and
ε = 2−p be the approximation factor, for rational parame-
ters p, k > 0. Let W be an infinite-length weight sequence.
Then, 0 ≤ DS (W,d)− DSLow(W,k, p) < d · ε.

Proof Sketch. While the definition of the lower approxima-
tion of discounted-sum may look notiationaly dense, it is
inspired by an alternate definition of discounted-sum:

DS (W,d) = lim
n→∞

gap(W [. . . n], d)

dn−1

where gap(U, d) = 0 if |U | = 0 and gap(U, d) = d ·
gap(V, d) + v if U = V · v.

Intuitively, the lower gap value approximates gap. Subse-
quently, DSLow approximates the discounted-sum.

4.2 Comparator for Approximation of DS
This section presents the construction of a comparator for
lower approximation of discounted-sum defined above.
Definition 1 (Comparator automata for lower approxima-
tion of DS). Let µ > 0 be an integer bound, and k, p > 0
be integers. The comparator automata for lower approxima-
tion of discounted sum with discount factor d = 1 + 2−k,
approximation factor ε = 2−p, upper bound µ, threshold
value v ∈ Q, and inequality relation R ∈ {≤,≥} is an au-
tomaton over infinite weight sequences W over the alphabet
Σ = {−µ, . . . , µ} that accepts W iff DSLow(W,k, p) R v.

Construction Sketch. We sketch the construction of the
comparator for lower approximation of discounted-sum. For
sake of exposition, we begin the construction for threshold
value v = 0. W.l.o.g., we present for the relation ≥. Nota-
tions µ, d = 1+2−k, ε = 2−p, andW are from Definition 1.

The lower gap value of prefixes of a weight-sequence can
be used as a proxy for acceptance of a weight-sequence in
the comparator for the following two observations:
1. DSLow(W,k, p) ≥ 0 for an infinite-length weight se-

quence W iff there exists a finite prefix A of W such that
gapLow(A, k, p) ≥ µ·2k+2−p. Let us denote µ·2k+2−p

by upperLimit.
2. DSLow(W,k, p) cannot be greater than or equal to

0 iff there exists a finite prefix A of W such that
gapLow(A, k, p) ≤ −µ · 2k. Let us denote −µ · 2k by
lowerLimit.

So, the core idea behind our construction is two fold: (a)
use states of the comparator to record the lower gap value of
finite-length prefixes, and (b) assign transitions so that the
final state of finite-prefix corresponds to its lower gap value.

To this end, we set the initial state to 0 as the lower gap
value of the 0-length prefix is 0. The transition relation mim-
ics the inductive definition of lower gap value, i.e. there is a
transition from a state s on the alphabet (weight) a to state
t if t = roundLow(d · s + a, k, p). These ensure that the
lower gap value of a finite-state word (finite-length weight-
sequence) is detected from the final state in its run. Clearly,
the transition relation is deterministic.

The final piece of the construction is to restrict the au-
tomata to finitely many states and to determine its accepting
states. Note that due to the enumerated observations it is suf-
ficient to track the lower gap value for only as long as it lies
between lowerLimit and upperLimit. Observe that there are
only finitely many such values of interest since lower gap
value is always an integer multiple of 2−(p+k). Thus, we

0start −4 10

−6 −5

−8

−1 1 ∗

0

1

1

−1

∗

Figure 2: Snippet of comparator for d = 1.5, ε = 0.5, µ = 1,
v = 0, and ≥. Labels on states have been simplified. A state
labelled by s refers to a lower gap value of s · 2−(p+k)

have obtained a finite number of states. By the first obser-
vation, state upperLimit is made an accepting sink since ev-
ery weight-sequence that visits upperLimit must be accepted
by the comparator. Similarly, by the second observation, the
state lowerLimit is made a non-accepting sink. This com-
pletes the construction for threshold value v = 0.

To extend the construction to a non-zero threshold value
v ∈ Q, let V be a lasso weight-sequence s.t. DS (V, d) =
v, the comparator incorporates V into its construction.
Specifically, we construct a comparator that accepts W iff
DSLow(W − V, k, p) ≥ 0. So, when W is accepted then
DS (W,d) ≥ v, otherwise DS (W,d) ≤ v + d · ε.

As an example, Figure 2 illustrates a snippet of the com-
parator with discount factor d = 1+2−1, approximation fac-
tor ε = 2−1, upper bound µ = 1, threshold value v = 0, and
relation ≥. As one can see, weight sequence A = −1, 0, 1ω

with discounted-sum 1
3 is accepting and weight sequence

B = −1,−1, 1ω with discounted-sum −1
3 is non-accepting.

Theorem 2. The comparator automata for lower approxi-
mation of discounted sum with discount factor d = 1 + 2−k,
approximation factor ε = 2−p, upper bound µ, threshold 0,
and inequality relation R ∈ {≤,≥} is a co-safety automata
with O(µ

(d−1)2·ε) states, where k, p > 0 are integers.

Therefore, DS (W,d) ≥ 0 if a weight-sequence W
is accepted by the comparator constructed above, and
DS (W,d) < d · ε otherwise (Theorem 1-2).

5 Reactive Synthesis from Satisficing and
Temporal Goals

This section presents the central contribution of this work.
We present a theoretically sound algorithm for reactive syn-
thesis from LTL and satisficing discounted-sum goals for the
case when the discount factor ranges between 1 and 2, re-
ferred to as fractional discount factors hereon.

Our algorithm utilizes the comparator automata for the
lower approximation of discounted-sum for fractional dis-
count factors constructed in Section 4. For ease of exposi-
tion, we present our solution in two parts. First, we present
an algorithm for reactive synthesis from satisficing goals
only in Section 5.1. Next, we extend this algorithm to solve
our original problem in Section 5.2.

5.1 Satisficing Goals

We describe an automata-based solution for reactive synthe-
sis from satisficing goals with fractional discount factor. Our
solution reduces to reachability games using the comparator
for lower approximation of discounted sum.

The key idea behind our solution is that the said com-
parator can be treated as a sufficient criteria to compute a
satisficing strategy for the system player. We explain this
further. Take a comparator for the lower approximation for
discounted-sum with discount factor d, approximation fac-
tor ε, threshold v ∈ Q, and relation ≥. Then, a play in the
quantitative game is v-satisficing for the system player if the
comparator accepts the cost sequence of the play. This can
be derived directly from Theorem 1-2. So, a strategy is v-
satisficing for the system player if it is winning with respect
to the comparator. To this end, we construct a synchronized
product of the quantitative game with the comparator. The
resulting product game is a reachability game since the com-
parator is represented by a co-safety automata. Formally,

Theorem 3. Let G be a quantitative game with discount
factor d = 1 + 2−k, for integer k > 0. Let v ∈ Q be the
threshold value and ε = 2−p be the approximation factor.
There exists a reachability game GA such that

• If the system has a winning strategy in GA, then the sys-
tem has a v-satisficing strategy in G.

• If the environment has a winning strategy in GA, then the
environment has a v + d · ε-satisficing strategy in G.

Proof. The product game synchronizes costs along edges in
the quantitative game with the alphabet of the co-safety com-
parator. Let G = (V = V0] V1, vinit, E, γ) be a quantita-
tive game. Let µ > 0 be the maximum absolute value of
costs along transitions in G. Then, let A = (S, sI ,Σ, δ,F)
be the co-safety comparator for lower approximation of
discounted-sum with upper bound µ, discount factor d =
1 + 2−k, approximation factor ε = 2−p, threshold value
v, and relation ≥. Then, the reachability game is GA =
(W = W0]W1, s0 × init, δW ,FW). Here, W = V × S,
W0 = V0 × S, and W1 = V1 × S. Clearly, W0 and W1

partition W . The edge relation δW ⊆ W × W is defined
such that edge ((v, s), (v′, s′)) ∈ δW synchronizes between
transitions (v, v′) ∈ E and (s, a, s′) ∈ δ if a = γ((v, v′)) is
the cost of transition (v, v′) in G. State s0× init is the initial
state and FW = V ×F .

It suffices to prove that a play is winning for the system in
GA iff its cost sequence A in G satisfies DSLow(A, k, p) ≥
0. This is ensured by the standard synchronized product con-
struction and Theorem 2. The reachability game GA is linear
in size of the quantitative graph and the comparator.

Theorem 3 describes a sound algorithm for reactive syn-
thesis from satisficing goals when the discount factor is frac-
tional. The algorithm is not complete since it is possible that
there is a v + d · ε-satisficing strategy for the environment
even when the system has a v-satisficing strategy.

5.2 Satisficing and Temporal Goals
Finally, we present our theoretically sound algorithm for
synthesis from LTL and discounted-sum satisficing goals for
fractional discount factors.

The algorithm is essentially a sum of two parts. The algo-
rithm combines the automata-based solution for satisficing
goals (presented in Section 5.1) with the classical automata-
based solutions for LTL goals (Pnueli and Rosner 1989).
Solving satisficing goals forms a reachability game while
solving LTL goals forms a parity game. Thus, the final game
which combines both of the goals will be a parity game.
Lastly, the algorithm will inherit the soundness guarantees
from both of its parts.

Theorem 4. Let G be a quantitative game with discount
factor d = 1 + 2−k, for integer k > 0. Let ϕ be an LTL
formula and v ∈ Q be a threshold value. Let ε = 2−p be the
approximation factor. There exists a parity game GA such
that

• If the system has a winning strategy in GA, then the sys-
tem has a v-satisficing and ϕ-satisfying strategy in G.

• If the environment has a winning strategy in GA, then
then either it has a v + d · ε-satisficing strategy or it has
a winning strategy w.r.t. LTL formula in G.

Proof Sketch. The reduction consists of two steps of syn-
chronized products: first with the comparator to fulfil the
v-satisficing goal and then with the automaton correspond-
ing to the LTL goal. The first step conducts the reduction
from Theorem 3 while lifting the labelling function from the
quantitative game to the reachability game: If a state s is la-
beled by l in the quantitative game, the all states of the form
(s, q) will be labelled by l in the reachability game. The sec-
ond product synchronizes between the atomic propositions
in the reachability game (with a labelling function) and the
deterministic parity automaton (DPA) corresponding to the
LTL specification, thus combining their winning conditions.

Observe that the product construction is commutative, i.e.,
one can first construct the product of G with the DPA of the
LTL goal and then with the comparator automata.

In either case, we generate a parity game of size linear in
|G|, DPA of the LTL specification, and the comparator. A
winning strategy for the system player in this game is also
v-satisficing and ϕ-satisfying for the same player in G.

A salient feature of our algorithm is that the complexity
to solve the final product game is primarily governed by the
temporal goal and not the satisficing goal. What we mean
is that if the temporal goal is given by a fragment of LTL,
such as co-safe LTL (Lahijanian et al. 2015), then the fi-
nal product game would be reachability game. This is be-
cause co-safe LTL formulas are represented by co-safety au-
tomata and thus their combination with comparators would
also be a co-safety automata. More generally, if the tempo-
ral goal is a conjunction of safety and reachability goals,
the resulting game would be a weak-Büchi game, which are
also solved in linear time in size of the game (Chatterjee
2008). This demonstrates that even though the comparator
contributes to growing the state-space of the game linearly,

whether the game is solved using efficient linear-time algo-
rithms or higher complexity algorithms for parity games is
determined by the temporal goal.

This feature has implications on the practicality of our al-
gorithm. In practice, it has been observed that wide-ranging
temporal goals in robotics domains can be expressed in
simpler fragments and variants of LTL, such as co-safe
LTL (Lahijanian et al. 2015) and LTLf (He et al. 2017).
These fragments can be expressed as conjunctions of safety
and reachability goals. For this fragment synthesis from tem-
poral and satisficing goals can be solved in linear-time.

6 Case Studies
The objective of our case studies is to demonstrate the utility
of reactive synthesis from LTL and satisficing goals in realis-
tic domains inspired from robotics and planning. Since ours
is the first algorithm to offer theoretical guarantees with frac-
tional discount factors, there are not any baselines to com-
pare to. So, we focus on our scalability trends and identify
future scalability opportunities.

6.1 Design and Set-up
We examine our algorithm on two challenging domains in-
spired from robotic navigation and manipulation problems.
Source code and benchmarks are open source1.

Grid World. The robot-human interaction is based on a
classic n × n grid world domain (see Fig 1). The grid sim-
ulates a grocery store with static obstacles, e.g., placements
of aisles. Each agent controls its own location and is only
permitted to move in the cardinal directions

The robot’s LTL constraint is to reach the locations of
all items on its grocery list without colliding with the walls
(in grey) or the dynamic human, thus combining safety and
reachability goals. The robot’s soft constraints are modelled
to achieve two behaviors. The first one is to distance it-
self from the human. The second is to encode promptness
in fulfilling its reachability goal reach banana. We model
distancing with quantitative rewards using the Manhattan
distance between the two agents. Suppose, the locations of
the players are (x0, y0) and (x1, y1), then the reward re-
ceived by the robot is given by

⌊
negative reward
|x0−x1|+|y0−y1|

⌋
, where

negative reward < 0 is an integer parameter. We model
promptness with an integer positive reward > 0 which the
robot receives only when it reaches a location of each item
on its grocery list for the first time. The rewards are addi-
tive, i.e., the robot receives the sum of both rewards in ev-
ery grid configuration. Then, it is reasonable to say that a
play accomplishes these two behaviors if the discounted-
sum reward of the robot is greater than or equal to 0, i.e.,
0-satisficing plays/strategies are good for the robot.

Conveyor Belt. Our second case study is inspired by
cutting-edge applications in manipulation tasks (Wells et al.
2021). A robot must operate along a r × c conveyor belt
with r rows and c columns across from a human. When out

1https://github.com/suguman/NonIntegerGames

Dimensions Number of States
Grid World

n = 4 397
n = 6 2407
n = 8 8093
n = 10 20572

Conveyor Belt
r × c = 4× 3, 2 blocks 9966
r × c = 5× 3, 2 blocks 31547
r × c = 5× 3, 3 blocks 60540

Table 1: Complexity of Benchmarks: Number of states in
product of the labelled quantitative game with the automata
of its LTL specification.

397 2407 8093 20572
Number of states

0

50

100

150

200

250

300

Ru
nt

im
e

(in
 se

c,
 ti

m
eo

ut
 =

 7
50

se
c)

d=1.125 (k=3)
d=1.25 (k=2)
d=1.5 (k=1)

Figure 3: Scalability (Number of states). Plots run-
time on Grid World with positive reward = 10 and
negative reward = −2. x-axis are n = 4, 6, 8, 10.

of reach of the human, the robot can move quickly. Other-
wise, it must proceed more slowly. The blocks move down
the conveyor belt at a constant speed. Each agent controls the
location of its arm. The human also controls the placement
of new objects. New blocks are placed whenever a block is
removed to maintain a constant number of blocks on the belt
at all times.

The robot’s LTL goal is to avoid interfering with the hu-
man. As soft constraints, the robot gains a positive reward
for every object it grasps and a negative reward for every
object that falls off the belt. The rewards are additive in ev-
ery belt configuration. The robot’s goal is to ensure its total
discounted-sum reward exceeds 0.

On grid world, we take n = 4, 6, 8, 10. On conveyor belt,
we take r × c = 4 × 3, 5 × 3 with 2 or 3 blocks. The hard-
ness of our benchmarks is illustrated Table 1. The bench-
marks have so many states since both scenarios have a large
number of unique configurations.

Combined with values for positive reward and
negative reward, we create 20 grid world and 7 con-
veyor belt benchmarks. Every benchmark is run with

5 10 15 20
Positive Reward

0

100

200

300

400

500

600

700

Ru
nt

im
e

(in
 se

c,
 ti

m
eo

ut
 =

 7
50

se
c)

d=1.125 (k=3)
d=1.25 (k=2)
d=1.5 (k=1)

Figure 4: Scalability plot in positive reward (affects the size
of the comparator). Plotting runtime on Grid world with n =
10 (20572 states) and negative reward = −2.

Conveyor Belt (7) Grid World (20)
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Nu
m

be
r o

f B
en

ch
m

ar
ks

d=1.5 (k=1)
d=1.25 (k=2)
d=1.125 (k=3)

Figure 5: Number of benchmarks solved

d = 1.5, 1.25, 1.125 (k = 1, 2, 3), approx. factor ε = 0.5
(p = 1) and threshold v = 0. Our prototype is implemented
in C + + on Ubuntu 18.04LTS. Experiments are run on an
i7-4770 with 32GBs of RAM with a timeout of 750 sec.

6.2 Observations
Our evaluation demonstrates that our solution successfully
scales to very large benchmarks. Despite their difficulty, we
solve almost all of our benchmarks (Figure 5). Runtime ex-
amination indicates that our algorithm is linear in size of the
game and the comparator, in practice. The scalability trends
in size of the game for varying discount factors are shown
in Figure 3. Determining the dependence on the comparator
automata is more involved since its size depends on several
parameters, namely positive reward, the discount factor, and
the approximation factor. Figure 4 suggests the algorithm is
linear in positive reward. The margin between the three dis-
count factor curves on Fig 3-4 suggests a significant blow-up

as the discount factor nears 1. Additional experiments (see
Appendix) that vary the approximation factor also display
a significant blow-up as the approximation factor decreases.
These are not alarming since the size of the comparator is in
the order ofO(positive reward),O((d−1)−2) andO(ε−1).
These reflect that our current implementation is faithful to
the theoretical analysis of the algorithm.

These are encouraging results as our implementation uses
explicit state representation. The overhead of this state rep-
resentations can be very high. In some cases, we observed
that for the large benchmarks about 70% of the total com-
pute time may be spent in constructing the product explicitly.
Despite these issues with explicit-state representation, our
algorithm efficiently scales to large and challenging bench-
marks. This indicates potential for further improvements.

In terms of quality of solutions, the resulting strategies
are of better quality. For example, in Figure 1 we observed
that as the discount factor becomes smaller the robot is able
to reason for a longer horizon and not get ”trapped”. An-
other benefit are the soundness guarantees. They are espe-
cially valuable in environments such as the Conveyor belt
which are so complex that they preclude a manual analysis.

To conclude, our case studies demonstrates the promise
of our approach in terms of its ability to scale and utility in
practical applications, and encourage future investigations.

7 Conclusion
Combining hard constraints (qualitative) with soft con-
straints (quantitative) is a challenging problem with many
applications to automated planning. This paper presents the
first sound algorithm for reactive synthesis from LTL con-
straints with soft discounted-sum rewards when the discount
factor is fractional. Our approach uses an automata-based
method to solve the soft constraints, which is then elegantly
combined with existing automata-based methods for LTL
constraints to obtain the sound solution. Case studies on
classical and modern domains of robotics planning demon-
strate use cases, and also, shed light on recommendations for
future work to improve scalability to open up exciting ap-
plications in robotics e.g. warehouse robotics, autonomous
driving, logistics (supply-chain automation).

Acknowledgements
We thank anonymous reviewers. This work is supported
in part by NSF grant 2030859 to the CRA for the CIFel-
lows Project, NSF grants IIS-1527668, CCF-1704883, IIS-
1830549, CNS-2016656, DoD MURI grant N00014-20-1-
2787, and an award from the Maryland Procurement Office.

References
Bansal, S.; Chatterjee, K.; and Vardi, M. Y. 2021. On Satis-
ficing of Quantitative Games. In Proc. of TACAS.
Bansal, S.; Chaudhuri, S.; and Vardi, M. Y. 2018a. Au-
tomata vs Linear-Programming Discounted-Sum Inclusion.
In Proc. of CAV.
Bansal, S.; Chaudhuri, S.; and Vardi, M. Y. 2018b. Com-
parator automata in quantitative verification. In Proc. of
FOSSACS.

Bansal, S.; Chaudhuri, S.; and Vardi, M. Y. 2018c. Com-
parator automata in quantitative verification (full version).
CoRR, abs/1812.06569.
Bansal, S.; and Vardi, M. Y. 2019. Safety and Co-safety
Comparator Automata for Discounted-Sum Inclusion. In
Proc. of CAV.
Bozkurt, A. K.; Wang, Y.; Zavlanos, M. M.; and Pajic, M.
2020. Control synthesis from linear temporal logic speci-
fications using model-free reinforcement learning. In 2020
IEEE International Conference on Robotics and Automation
(ICRA), 10349–10355. IEEE.
Camacho, A.; Bienvenu, M.; and McIlraith, S. A. 2019. To-
wards a unified view of AI planning and reactive synthesis.
In Proc. of ICAPS.
Camacho, A.; Chen, O.; Sanner, S.; and McIlraith, S. A.
2017. Non-markovian rewards expressed in LTL: guiding
search via reward shaping. In In Proc. of SOCS.
Camacho, A.; Icarte, R. T.; Klassen, T. Q.; Valenzano, R. A.;
and McIlraith, S. A. 2019. LTL and Beyond: Formal Lan-
guages for Reward Function Specification in Reinforcement
Learning. In Proc. of IJCAI.
Chatterjee, K. 2008. Linear time algorithm for weak parity
games. arXiv preprint arXiv:0805.1391.
Chatterjee, K.; Henzinger, T. A.; Otop, J.; and Velner, Y.
2017. Quantitative fair simulation games. Information and
Computation.
Church, A. 1957. Applications of recursive arithmetic to the
problem of circuit synthesis. Institute for Symbolic Logic,
Cornell University.
Ding, X.; Smith, S. L.; Belta, C.; and Rus, D. 2014. Optimal
control of Markov decision processes with linear temporal
logic constraints. TACON.
Hasanbeig, M.; Kantaros, Y.; Abate, A.; Kroening, D.; Pap-
pas, G. J.; and Lee, I. 2019. Reinforcement learning for tem-
poral logic control synthesis with probabilistic satisfaction
guarantees. In 2019 IEEE 58th Conference on Decision and
Control (CDC), 5338–5343. IEEE.
He, K.; Lahijanian, M.; Kavraki, L.; and Vardi, M. 2017.
Reactive synthesis for finite tasks under resource constraints.
In Proc. of IROS.
He, K.; Wells, A. M.; Kavraki, L. E.; and Vardi, M. Y. 2019.
Efficient symbolic reactive synthesis for finite-horizon tasks.
In Proc. of ICRA.
Kalagarla, K. C.; Jain, R.; and Nuzzo, P. 2021. Optimal Con-
trol of Discounted-Reward Markov Decision Processes Un-
der Linear Temporal Logic Specifications. In 2021 Ameri-
can Control Conference (ACC), 1268–1274. IEEE.
Kress-Gazit, H.; Lahijanian, M.; and Raman, V. 2018. Syn-
thesis for robots: Guarantees and feedback for robot behav-
ior. Annual Review of Control, Robotics, and Autonomous
Systems.
Kupferman, O.; and Vardi, M. Y. 1999. Model checking of
safety properties. In Proc. of CAV.
Kwiatkowska, M.; Parker, D.; and Wiltsche, C. 2017.
PRISM-games: Verification and Strategy Synthesis for

Stochastic Multi-player Games with Multiple Objectives.
STTT.
Lahijanian, M.; Almagor, S.; Fried, D.; Kavraki, L.; and
Vardi, M. 2015. This Time the Robot Settles for a Cost:
A Quantitative Approach to Temporal Logic Planning with
Partial Satisfaction. In Proc. of AAAI.
Pnueli, A. 1977. The temporal logic of programs. In Proc.
of FOCS.
Pnueli, A.; and Rosner, R. 1989. On the synthesis of a reac-
tive module. In Proc. of POPL.
Shapley, L. S. 1953. Stochastic games. Proceedings of the
National Academy of Sciences of the United States of Amer-
ica, 39(10): 1095.
Sutton, R.; and Barto, A. 2018. An Introduction to Rein-
forcement Learning, Second Edition. MIT press Cambridge.
Thomas, W.; Wilke, T.; et al. 2002. Automata, logics, and
infinite games: A guide to current research.
Wells, A. M.; Kingston, Z.; Lahijanian, M.; Kavraki, L. E.;
and Vardi, M. Y. 2021. Finite-Horizon Synthesis for Prob-
abilistic Manipulation Domains. In IEEE Int. Conf. Robot.
Autom.
Wen, M.; Ehlers, R.; and Topcu, U. 2015. Correct-by-
synthesis reinforcement learning with temporal logic con-
straints. In Proc. of IROS.

A Appendix: Complete Proofs
A.1 Definition of lower approximation of DS is

well-defined
For an infinite-length weight sequence W , let W [. . . n] de-
note its n-length prefix for n ≥ 0. Given parameters k and
p of the discount factor and the approximation factor, re-
spectively, let the resolution be given by r = 2−(p+k). For
real number x ∈ R, let roundLow(x, k, p) denote the largest
integer multiple of the resolution that is less than or equal
to x. Formally, roundLow(x, k, p) = i · 2−(p+k) for an in-
teger i ∈ Z such that for all integers j ∈ Z for which
j ·2−(p+k) ≤ x, we get that j ≤ i. Then it is clear that for all
real values x ∈ R, 0 ≤ x − roundLow(x, k, p) < 2−(p+k).
Then, the lower approximation of discounted-sum is defined
as follows:
Definition 2 (Lower Approximation of Discounted-Sum).
Given discount factor d = 1 + 2−k and approxima-
tion factor ε = 2−p with rational-valued parameters
k, p ∈ Q. The lower gap of a finite-length weight se-
quence U , denoted gapLow(U, k, p) is 0 if |U | = 0 and
roundLow(gapLow(V, k, p)+v, k, p) if U = V ·v. Then, the
lower approximation of discounted sum of an infinite-length
weight sequence W with discount factor d and approxima-
tion factor ε is denoted by and defined as follows:

DSLow(W,k, p) = lim
n→∞

gapLow(W [. . . n], k, p)

dn−1

Our goal is to show that DSLow(W,k, p) =

limn→∞
gapLow(W [n],k,p)

dn−1 is well-defined, i.e., the limit
of gapLow(W [...n],k,p)

dn−1 exists as n → ∞ (Theorem 5). Next,

we need to show that Definition 2 indeed computes a
value that approximates the discounted-sum of a sequence
(Theorem 1).

We begin with some additional notation. Let d > 1 be
a rational valued discount factor. The recoverable gap of
a finite, bounded, weight-sequence U and discount factor
d, denoted by gap(U, d), is 0 if |U | = 0 and gap(V ·
v, d) = d · gap(V, d) + v if U = V · v. Intuitively, the
recoverable gap of a finite weight-sequence is the normal-
ized discounted-sum of the finite weight-sequence. Then,
it is known that for an infinite-length weight sequence W
limn→∞

gap(W [...n],d)
dn−1 → DS (W,d). Then the following

holds:

Lemma 1. Let d = 1 + 2−k and 2−p be the discount-factor
and precision, for rational numbers k, p > 0. Let µ > 0 be
the upper-bound. Let W be an infinite and bounded weight-
sequence. Then, there exists an infinite and bounded ratio-
nal number weight-sequence U such that for all n > 0,
gapLow(W [. . . n], k, p) = gap(U [. . . n], d).

Proof. For sake of simplicity, we assume W is an integer
weight sequence. The proof extends to rational weight se-
quences as well. Let W = w0w1w2 . . . such that for all
i ≥ 0, wi ∈ Z and |wi| < µ. We will construct the desired
infinite-length weight sequence U inductively.

Base Case. Consider the 1-length prefix of W ,
W [. . . 1] = (w0). By definition, gapLow(W [. . . 1], k, p) =
roundLow((w0), k, p) = w0. So, we set u0, the 0-th
element of U , to be w0. Clearly, gap(U [. . . 1], d) = w0 =
gapLow(W [. . . 1], k, p).

Inductive Hypothesis. For an n > 0, let there ex-
ist an n-length rational-number sequence (u0u1 . . . un−1)
bounded by µ such that for all m ≤ n it holds that
gapLow(W [. . .m], k, p) = gap((u0u1 . . . um−1), d).

Induction Step. It suffices to prove that the n-length
weight-sequence (u0u1 . . . un−1) can be extended by ap-
pending a rational-number un bounded by µ such that
gapLow(W [. . . (n + 1)], k, p) = gap((u0u1 . . . un), d)
holds.

By definition, gapLow(W [. . . (n + 1)], k, p) =
roundLow(d · gapLow(W [. . . n], k, p) + wn, k, p). By
definition of roundLow, there exists a 0 ≤ εn < 2−(p+k)

such that roundLow(d·gapLow(W [. . . n], k, p)+wn, k, p) =
d · gapLow(W [. . . n], k, p) + wn − εn. There-
fore, we obtain gapLow(W [. . . (n + 1)], k, p) =
d · gapLow(W [. . . n], k, p) + wn − εn. By I.H., we see
gapLow(W [. . . (n+1)], k, p) = d ·gap(u0u1 . . . un−1, d)+
wn − εn. Set un = wn − εn. Then, we obtain that
|un| ≤ µ. Therefore, gapLow(W [. . . (n + 1)], k, p) =
gap(u0u1 . . . un, d).

Therefore, let U be the infinite and bounded rational-
number weight-sequence generated as defined above. Then
for all n > 0, gapLow(W [. . . n], k, p) = gap(U [. . . n], d).

Note that such a U exists for all infinite and bounded-
weight sequences W , even if W is not an integer weight-
sequence. The same proof can be replicated for that case as
well. The difference is that for a general rational number

weight sequence if W is bounded by µ, then the U will be
bounded by µ+ 1.

Theorem 5. Let d = 1 + 2−k and 2−p be the discount-
factor and precision, for rational numbers k, p > 0. Let
µ > 0 be the upper-bound. Let W be an infinite and
bounded weight-sequence. Then limn→∞

gapLow(W [...n],k,p)
dn−1

exists, where W [. . . n] is the n-length prefix of W .

Proof. We know from Lemma 1, that there exists an infinite
and bounded rational number weight-sequence U such that
for all n > 0, gapLow(W [. . . n], k, p) = gap(U [. . . n], d).
Therefore, gapLow(W [...n],k,p)

dn−1 = gap(U [...n],d)
dn−1 .

Since limn→∞
gap(U [...n],d)

dn−1 exists, we also get that
limn→∞

gapLow(W [...n],k,p)
dn−1 exists and it is equal to

DS (U, d).

We have proven that the desired limit exists. Therefore,
Definition 2 is well-defined.

Next, we prove that Definition 2 computes a value that ap-
proximates the discounted-sum of a weight sequence. In the
following, we will define the resolution sequences as fol-
lows: An n-length resolution sequence is the n-length se-
quence in which all elements are the resolution r = 2−(p+k).
Lemma 2. Let d = 1 + 2−k and 2−p be the discount factor
and approximation factor, for rational numbers k, p > 0.
Let µ > 0 be the upper-bound. LetW be a non-empty, finite-
length, and bounded weight sequence. Then,

0 ≤ gap(W,d)− gapLow(W,k, p) < gap(R, d)

where R is |W |-length resolution sequence.

Proof. The proof proceeds by induction on the length of the
weight sequence.

Base Case. When |W | = 1. Let W = w0 where w0 ∈ Z
and |w0| ≤ µ. Then gap(W,d) = gapLow(W,k, p) =
w0. Then gap(W,d) = W0 and gapLow(W,k, p) =
roundLow(W0, k, p). Thus, trivially, 0 ≤ gap(W,d) −
gapLow(W,k, p) < 2−(p+k) = gap(R, d), where R is the
resolution sequence of length 1.

Inductive Hypothesis. For all weight-sequences W of
length n ≥ 1, it is true that 0 ≤ gap(W,d) −
gapLow(W,k, p) < gap(R, d), where R is |W |-length reso-
lution sequence.

Induction Step. We extend this result to weight-
sequences of length n+1. LetW be an n+1-length weight-
sequence. Let W = W [. . . n] · wn wn ∈ Z such that
|wn| < µ.

First, we show that gap(W,d)− gapLow(W,k, p) ≥ 0:

gap(W,d)− gapLow(W,k, p)

=d · gap(W [. . . n], d) + wn

− roundLow(d · gapLow(W [. . . n], k, p) + wn, k, p)

From the I.H. we get
≥d · gap(W [. . . n], d) + wn

− roundLow(d · gap(W [. . . n], d) + wn, k, p)

Since gap(a, d) − gapLow(a, k, p) ≥ 0, we obtain the de-
sired result that gap(W,d)− gapLow(W,k, p) ≥ 0.

Next, we show that gap(W,d) − gapLow(W,k, p) <
gap(R, d), where R is the |W |-length resolution sequence.

gap(W,d)− gapLow(W,k, p)

=d · gap(W [. . . n], d) + wn

− roundLow(d · gapLow(W [. . . n], k, p) + wn, k, p)

Since gap(a, d)− gapLow(a, k, p) < 2−(p+k), we get
<d · gap(W [. . . n], d) + wn

− (d · gapLow(W [. . . n], k, p) + wn) + 2−(p+k)

=d · gap(W [. . . n], d)− d · gapLow(W [. . . n], k, p)

+ 2−(p+k)

From the I.H. we obtain

<d · gap(R′, d) + 2−(p+k)

where R′ is the n-length resolution sequence
=gap(R, d) where R is the (n+ 1)-length resolution sequence

This concludes our proof.

A.2 Proof of Theorem 1
Theorem 1. Let d = 1 + 2−k be the discount factor and
ε = 2−p be the approximation factor, for positive rational
parameters p, k > 0. Let W be an infinite-length weight
sequence. Then,

0 ≤ DS (W,d)− DSLow(W,k, p) < d · ε

Proof. Let Rn denote the n-length resolution sequence, and
R be infinite-length resolution sequence. From Lemma 2,
we know that for all n > 0,

0 ≤ gap(W [n], d)− gapLow(W [n], k, p)

< gap(Rn, d)

⇐⇒ 0 ≤ (gap(W [n], d)− gapLow(W [n], k, p))

dn−1

<
gap(Rn, d)

dn−1

⇐⇒ 0 ≤ (gap(W [n], d)

dn−1
− gapLow(W [n], k, p))

dn−1

< DS (R, d)

By taking the limit and by further simplification, we get
⇐⇒ 0 ≤ DS (W,d)− DSLow(W,k, p) < d · ε

A.3 Comparator Automata Construction
Theorem 2. Let µ > 0 be and integer upper bound. Let
k, p > 0 be integer parameters s.t. d = 1 + 2−k is the dis-
count factor and ε = 2−p is the approximation parameter.
Then, the comparator automata for lower approximation of
discounted sum with discount factor d = 1 + 2−k, approx-
imation factor ε = 2−p, upper bound µ, threshold 0 and
inequality relation R ∈ {≤,≥} is ω-regular.

Proof. The proof presents the construction of a co-safety
automaton for the said comparator, thus proving the com-
parator is ω-regular. Recall, the parameters are integer upper
bound µ > 0, discount factor d = 1 + 2−k, and approxi-
mation factor ε = 2−p where k, p > 0 are integer discount
factors, and threshold value is 0. We present the construction
for relation≥. The relation≤ follows a similar construction.

Let Tl be the largest integer such that Tl ·2−(p+k) ≤ −µ ·
2k. Let Tu be the smallest integer such that Tu · 2−(p+k) ≥
µ · 2k + 2−p. Construct a deterministic Büchi automaton
Aµ,d,ε≥0 = (S, sI ,Σ, δ,F) as follows:

1. S = {Tl,Tl + 1, . . . ,Tu}, sI = {0} and F = {Tu}
2. Alphabet Σ = {−µ,−µ+ 1, . . . , µ− 1, µ}
3. Transition function δ : S × Σ→ S s.t. t = δ(s, a) then:

(a) If s ∈ S \ {Tu,Tl} and roundLow(d · s · 2−(p+k) +
a, k, p) = i · 2−(p+k) for i ∈ Z

i. If Tl ≤ i ≤ Tu, then t = i
ii. If i > Tu, then t = Tu

iii. If i < Tl, then t = Tl
(b) Else, if s = Tl or s = Tu, then t = s for all a ∈ Σ

Observe that the automaton is a co-safety automaton as its
accepting state is a sink. It consists of O(µ

(d−1)2·ε) states.
We are left with the main proof that Aµ,d,ε accepts an in-

finite weight sequence W iff DSLow(W,k, p) ≥ 0. For this,
we explain the key ideas behind the construction. A state s is
interpreted to have a lower gap value of s·2−(p+k). Since the
automaton is deterministic, every weight sequence, finite-
or infinite-length, has a unique run in the automaton. so,
Tthe idea is to ensure that for any finite-length weight se-
quence A if state s is the final state in its run in the automa-
ton, then (a). if s is Tu, gapLow(A, k, p) ≥ Tu · 2−(p+k),
(b). if s is Tl, gapLow(A, k, p) ≤ Tu · 2−(p+k), and (c)
gapLow(A, k, p) = s · 2−(p+k) otherwise.

In summary, the critical observation here is that Item 3a
ensures that the transition function follows the inductive
definition of lower gap from Definition 2. This uses a
proof by induction on the length of weight sequence A.
If |A| = 0, the final state of its run is the initial state 0,
i.e., gapLow(A, k, p) = 0. Suppose the hypothesis holds
for weight-sequences of length n, we prove it holds for
weight sequences of length n + 1. Let A = B · b and A
be of length n + 1. Then, suppose the final state in the
run of B is s. Suppose, b ∈ S \ {Tu,Tl}. Then, by I.H.
gapLow(B, k, p) = s · 2−(p+k). Let the automaton tran-
sition to state t on reading alphabet b from state s. Then,
from definition of lower gap value, gapLow(A, k, p) =
roundLow(d · gapLow(B, k, p) + b, k, p). In other words,
gapLow(A, k, p) = roundLow(d·s·2−(p+k)+b, k, p). This is
precisely the criteria used in the transition function to deter-
mine the state t in Eq. 3. Thus, suppose gapLow(A, k, p) =
i · 2−(p+k), then (a) if Tl ≤ i ≤ Tu, then t = i and
gapLow(A, k, p) = t · 2−(p+k), (b) if i > Tu then t =
Tu and gapLow(A, k, p) = i · 2−(p+k) > t · 2−(p+k),
and (c) if i < Tl then t = Tl and gapLow(A, k, p) =
i · 2−(p+k) < t · 2−(p+k). For the state Tu, one can prove

that if gapLow(A, k, p) ≥ Tu · 2−(p+k) then for all a ∈ Σ,
gapLow(A ·a, k, p) ≥ Tu ·2−(p+k). Conversely, for the state
Tl, one can prove that if gapLow(A, k, p) ≤ Tl · 2−(p+k)
then for all a ∈ Σ, gapLow(A · a, k, p) ≤ Tl · 2−(p+k). This
completes the proof of the claim.

Finally, to prove correctness it is sufficient to show that
for all sequences W , DSLow(W,k, p) ≥ 0 iff there exists
a finite prefix A of W such that gapLow(A, k, p) ≥ Tu ·
2−(p+k). This is why state Tu is an accepting sink state.

B Case Study I: Grid World
The human-robot interaction from is based off a classic n×n
grid world domain. The human and robot correspond to the
environment and system player. Initially, the two agents are
present at diagonally opposite corners of the grid. Two ba-
nanas have been placed on the grid, one at each of the re-
maining corners. There are static obstacles of different con-
figurations on these grids, e.g., placements of aisles (Fig 1)
and an obstacle block in the center. Each agent controls its
own location and is allowed to move in the cardinal direc-
tions only. The agents take turns to change their location. We
assume the human makes the first move. We say a collision
occurs between the robot and an object/agent if the robot
is in the same location as the object/agent. In this case, a
strategy for the robot tells in which location to move to next
based on the history of previous configurations.

The robot’s hard (qualitative) constraint is to reach
the location of at least one of the bananas without col-
liding into the static obstacles or the (moving) human.
Thus, this constraint combines safety and reachability
goals. It can be expressed as an LTL formula using
atomic propositions reach banana, collision obstacle, and
collision human. Proposition reach banana holds on those
configurations of the grid in which the robot reaches the
location of the banana. Proposition collision obstacle holds
on those configurations in which the robot collides with the
wall. Similarly, proposition collision human holds on those
configurations in which the robot collides with the human.
Then, the LTL formula ϕ is

ϕ :=G(¬collision obstacle) ∧ G(¬collision human)

∧F(reach banana)

The robot’s soft constraints are modelled to achieve two
behaviors. The first one is to distance itself from the human.
This could alternately be represented using temporal logic,
however the representation will be cumbersome. Quantita-
tive rewards can easily express this behavior. Given a neg-
ative integer parameter negative reward, a negative reward
is assigned to the robot if it comes too close to the human.
This is modelled using the Manhattan distance between the
two agents. Suppose, the locations of the agents are (x0, y0)
and (x1, y1), then given negative reward < 0, the reward
received by the robot is⌊ negative reward

|x0 − x1|+ |y0 − y1|

⌋
The second behavior expressed by soft constraints is to

encode promptness to fulfil reach banana. Temporal logics

are good at specifying what should be done (using the F op-
erator) but, to the best of our knowledge, they cannot nicely
specify measures such as promptness. One could attempt us-
ing several X (Next operator) but that puts a hard bound on
the number of steps within which the constraint must be sat-
isfied. With quantitative constraints, one can encode prompt-
ness more naturally and softly (giving the robot more flexi-
bility in deciding when to accomplish the constraint). In our
case, we model promptness with a positive integer parame-
ter positive reward > 0 which the robot receives only when
it reaches a location of the banana for the first time. This
is necessary since otherwise the robot’s strategy could be to
remain at the location of a banana, thus flouting the consid-
eration to distance itself from the human.

These two rewards are additive, i.e., if both the positive
and negative rewards are non-zero in a configuration of the
grid world, the robot receives the sum of both rewards in
that configuration. Then, it is reasonable to say that a play
accomplishes these two behaviors if the total discounted-
sum reward of the robot is greater than or equal to 0, i.e.,
0-satisficing plays/strategies are good for the robot. Observe
that if the discount factor were an integer, then robot would
be prompted to pick up the banana too soon. Then in Fig 1
the robot would pick up the closer banana and would be un-
able to maintain sufficient distance from the human. With
fractional discount factors, the robot recognizes it can plan
for a longer term and will opt to reach the farther banana.
This will also ensure it maintains distance form the human.
This is exactly why fractional discount factors are preferred:
they allow for planning on a longer term than what conser-
vative integer factors would permit.

Our algorithm offers a method to soundly generate a
strategy that is both ϕ-satisfying and 0-satisficing for the
robot in this scenario. The input to the algorithm will be a
quantitative game (G,ϕ, 0) where G is a quantitative graph
which formalizes the grid world, assigns its configurations
(states) labels from the atomic propositions reach banana,
collision obstacle, collision human, and costs to transi-
tions based on assignments from negative reward and
positive reward as described above.

The output of the algorithm is either a strategy for the
robot which satisfies the LTL formula ϕ and is 0-satisficing
for the robot in the grid, or it is a strategy for the environ-
ment which either satisfies ¬ϕ or is d · ε-satisficing for the
environment where d and ε are the discount factor and ap-
proximation factor, respectively.

Empirical Analysis In the experiments on grid world, we
take n = 4, 6, 8, 10. We choose values of positive and neg-
ative rewards (positive reward, negative reward) from the
set {(5,−1), (10,−1), (10,−2), (20,−2), (20,−5)}, creat-
ing 20 grid world benchmarks.

Observations and Inferences Our experiments demon-
strate that our algorithm facilitates the design of provably
correct strategies for the robot with respect to given the soft
and hard constraints. This way we are able to soundly gen-
erate a strategy for the robot, from high-level specifications,
which not only satisfies a temporal objective but also take
into softer consideration social-distancing and promptness.

No other known approach is able to accomplish this task
soundly.

Our algorithm solves all all but one benchmark within
the timeout. The benchmark our algorithm failed on the
largest grid of size 10 × 10 when d = 1.125 (k = 3),
positive reward = 20, and negative reward = −2. The scal-
ability trends of our algorithm on the grid world with a 2×2
obstacle in the center of the grid on the 10 × 10 grid with
negative reward = −2 have been summarized in Fig ??.
The runtime trends with other grid sizes and negative values
are similar. This shows that the performance of the algorithm
is faithful to the size of the parity game which, in turn, is lin-
ear in the size of the comparator automata (Theorem 4).

A thorough analysis of our experiments reveals avenues
for improvement of the scalability of our algorithm. The
one benchmark for which our algorithm failed to terminate
within the timeout, we observed that the number of states
in the product was high, the positive reward was high, and
the discount factor was low (10 × 10 grid with d = 1.125,
positive reward = 20, negative reward = −2). Each one of
these parameters contributes significantly to increasing the
size of the comparator (Theorem 2) and subsequently the
parity game (Theorem 4). In this case, we observed that the
algorithm ran out of memory on our machine. This suggests
to focus on succinct representations of the comparator and
the game in future work.

Another observation has to do with the percentage of
time spent in each step of the algorithm. Currently, our
algorithm implements an explicit construction of the par-
ity game. We observed that on most benchmarks, the al-
gorithm spent around 70-80% of its time constructing the
parity game and only 20-30% of the time in solving it. This
indicates that another avenue for further scalability is to in-
vestigate approaches to solve parity games with decomposed
specifications.

C Case Study II: Conveyor Belt
In our second case study, we consider a significantly more
challenging set of scenarios. A robot must operate along a
r × c conveyor belt with r rows and c columns across from
a human, see Fig 6. Both agents are restricted to not reach
fully across the conveyor belt. When out of reach of the hu-
man, the robot can move quickly. Otherwise, it must proceed
more slowly. The blocks move down the conveyor belt at a
constant speed.

The human controls the location of its arm and the place-
ment of new objects. New blocks of identical type (color) are
placed whenever a block is removed from the belt so that a
constant number and proportion of types of blocks are main-
tained on the belt. The human controls the placement of new
blocks, except that it must place green blocks near the robot
(to ensure the game is winnable).

2 blocks. In the two block scenario, the robot’s LTL goal
is to ensure it doesn’t interfere with the human grasping ob-
jects. We define proposition collision as in the previous ex-
ample. Proposition block human holds in a state if the robot
and human are adjacent to the human’s object and the human

Figure 6: Example conveyor belt scenario with three blocks.

simultaneously. Then, the robot’s LTL goal in the 2-block
scenario is

ϕ2 := G(¬collision) ∧ G(¬block human)

The robot’s soft constraint is designed to encourage it to
pick up as many blocks as possible. The robot receives a
positive reward for every block it picks up and a negative
reward for every block that falls off the belt.

3 blocks. In the three block scenario (Fig 6), the green
blocks are “critical” and the robot must grab one. The blue
blocks are “desired” and the robot should retrieve as many of
them as possible. The red blocks are “the human’s” and the
robot should ensure it never blocks the human from reaching
them. The robot’s LTL goal is to ensure it grasps all green
objects and avoids the human grasping red objects. We de-
fine Propositions collision and block human as in the previ-
ous example. Proposition dropped critical holds if a critical
object has been dropped prior to or in the current state.

ϕ3 :=G(¬collision) ∧ G(¬block human)

∧G(¬dropped critical)

The robots soft constraint is to maximize the number of
blue objects it grasps. Each arm is modeled as grid cells em-
anating from either side of the conveyor belt. The robot con-
trols the location of its arm. Every desired object retrieved
gives positive reward. Every desired object that falls off the
end of the belt gives negative reward. If both positive and
negative reward are achieved in the same step, the rewards
are added.

C.1 Empirical Evaluation
In the experiments on conveyor belt, r × c = 4 × 3, 5 × 3
with 2 or 3 blocks. We choose negative reward = −1. With
2 blocks, we choose positive reward = 2, 3, 4 and with 1
block positive reward = 5, creating 7 conveyor belt bench-
marks.

Observations and Inferences For the two block scenario,
our algorithm solves all but one benchmark. The failure here
is a 5 × 3 conveyor belt when the positive reward is 4 and
the discount factor is 1.125 (k = 3). As earlier, the runtime

trends are consistent with the theoretical analysis on size of
the parity game and the comparator.

In the solved cases, we see that the algorithm generates
a strategy for the robot in all games (which we engineer so
that the robot can win). We note that the robot quickly ob-
tains its rewards, suggesting its policy is of high-quality. Un-
fortunately, the complexity of the game makes it intractable
to hand-compute an optimal policy and compare it to the
robot’s policy generated by the algorithm. The inability to
manually or algorithmically check the correctness of a pol-
icy w.r.t. optimality is a reason why one would want sound
algorithms like ours to solve complex scenarios like this.

On the three block scenario, we performed experiments
on the 5× 3 conveyor belt. Our algorithm terminates on the
belts when the discount factor is d = 1.5, 1.25 (k = 1, k =
2) but it struggled with discount factor d = 1.125(k = 3).
As a representative case. Further, none of our experiments
terminated at d = 1.125. This is not surprising since the
product game is large (60K states) and the discount factor
is low. Again, we see that future work will require improved
scalability. This will open up new applications for robotic
synthesis

Rewards Discount
factor

Total
time(s)Positive Negative

Grid World n = 4 with 397 states

5 -1 1.25 0.015
1.125 0.049

10 -1 1.25 0.012
1.125 0.038

10 -2 1.25 2.084
1.125 11.770

20 -2 1.25 4.067
1.125 24.503

20 -5 1.25 4.542
1.125 25.850

Grid World n = 6 with 2407 states

5 -1 1.25 0.050
1.125 0.158

10 -1 1.25 0.050
1.125 0.150

10 -2 1.25 6.856
1.125 46.199

20 -2 1.25 13.987
1.125 94.525

20 -5 1.25 19.424
1.125 106.136

Grid World n = 8 with 8093 states

5 -1 1.25 0.159
1.125 0.444

10 -1 1.25 0.158
1.125 0.419

10 -2 1.25 19.952
1.125 138.201

20 -2 1.25 38.293
1.125 279.519

20 -5 1.25 56.544
1.125 330.451

Grid World n = 10 with 20572 states

5 -1 1.25 0.416
1.125 0.972

10 -1 1.25 0.413
1.125 0.914

10 -2 1.25 39.102
1.125 315.064

20 -2 1.25 78.329
1.125 Timeout

20 -5 1.25 122.792
1.125 Timeout

Table 2: Analysis of Grid World Domain. Table does not
record d = 1.5 to improve readability of table. All runs with
d = 1.5 terminated within less than 1 sec. Timeout = 750sec

Rewards Discount
factor

Total
time(s)Positive Negative

Conveyor Belt r × c = 4× 3 with 2 blocks (9966 states)

2 -1 1.25 20.121
1.125 102.815

3 -1 1.25 29.922
1.125 152.274

4 -1 1.25 40.216
1.125 208.748

Conveyor Belt r × c = 5× 3 with 2 blocks (31547 states)

2 -1 1.25 64.782
1.125 332.764

3 -1 1.25 98.520
1.125 677.558

4 -1 1.25 127.422
1.125 Timeout

Conveyor Belt r × c = 5× 3 with 3 blocks (60540 states)

5 -1 1.25 712.941
1.125 Timeout

Table 3: Analysis of Conveyor Belt domain. Table does not
record d = 1.5 to improve readability of table. All runs
with d = 1.5 terminated within less than 10 sec. Timeout
= 750sec

Table 4: 10x10 social dist with varied approximation factor

Rewards Disc.
factor

Approx
factor

Total
time(s)Pos Neg

5 -1

1.5 1.25 0.385
1.125 0.394

1.25 1.25 0.415
1.125 0.421

1.125 1.25 0.915
1.125 0.917

5 -2

1.5 1.25 1.642
1.125 6.407

1.25 1.25 39.018
1.125 82.824

1.125 1.25 319.686
1.125 —

10 -1

1.5 1.25 0.383
1.125 0.443

1.25 1.25 0.418
1.125 0.428

1.125 1.25 0.908
1.125 0.917

10 -2

1.5 1.25 4.001
1.125 11.082

1.25 1.25 80.069
1.125 160.947

1.125 1.25 —
1.125 —

