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Abstract

LTLf synthesis is the automated construction of a reactive
system from a high-level description, expressed in LTLf, of
its finite-horizon behavior. So far, the conversion of LTLf for-
mulas to deterministic finite-state automata (DFAs) has been
identified as the primary bottleneck to the scalabity of syn-
thesis. Recent investigations have also shown that the size of
the DFA state space plays a critical role in synthesis as well.
Therefore, effective resolution of the bottleneck for synthe-
sis requires the conversion to be time and memory perfor-
mant, and prevent state-space explosion. Current conversion
approaches, however, which are based either on explicit-state
representation or symbolic-state representation, fail to ad-
dress these necessities adequately at scale: Explicit-state ap-
proaches generate minimal DFA but are slow due to expen-
sive DFA minimization. Symbolic-state representations can
be succinct, but due to the lack of DFA minimization they
generate such large state spaces that even their symbolic rep-
resentations cannot compensate for the blow-up.
This work proposes a hybrid representation approach for the
conversion. Our approach utilizes both explicit and symbolic
representations of the state-space, and effectively leverages
their complementary strengths. In doing so, we offer an LTLf
to DFA conversion technique that addresses all three necessi-
ties, hence resolving the bottleneck. A comprehensive empir-
ical evaluation on conversion and synthesis benchmarks sup-
ports the merits of our hybrid approach.

1 Introduction
Reactive synthesis is the automated construction, from a
high-level description of its desired behavior, of a reac-
tive system that continuously interacts with an uncontrol-
lable external environment (Church 1957). This declarative
paradigm holds the promise of simplifying the task of de-
signing provably correct reactive systems.

This work looks into the development of reactive synthe-
sis from specifications in Linear Temporal Logic over finite
traces (LTLf), or LTLf synthesis, for short. LTLf is a specifi-
cation language that expresses rich and complex temporal
behaviors over a finite time horizon (Baier and McIlraith
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2006; De Giacomo and Vardi 2013). This formalism has
found application in specifying task plans in robotics (He
et al. 2017; Lahijanian et al. 2015), safety-critical objec-
tives (Zhu et al. 2017a), business processes (Pesic, Bosnacki,
and van der Aalst 2010), and the like.

Seminal results have established that LTLf synthesis is
2EXPTIME-complete (De Giacomo and Vardi 2015). Since
then, several undertakings have led to algorithmic solutions
for synthesis (De Giacomo and Vardi 2015; Camacho et
al. 2018). The current state-of-the-art reduces synthesis to
a reachability game played on a deterministic finite-state au-
tomaton, or DFA (Zhu et al. 2017b). The DFA is obtained by
converting the input LTLf specification into a DFA that rec-
ognizes the same language. This conversion has been iden-
tified as a primary scalability bottleneck in synthesis (Zhu
et al. 2017b). This is not surprising as the DFA is known to
be double-exponential in the size of the specification in the
worst case (Kupferman and Vardi 1999). In order to be ef-
fective for synthesis the conversion must, in addition to be-
ing time and memory performant, also prevent state-space
explosion, as recent investigations have discovered that the
efficiency of solving the game on a DFA is strongly affected
by the size of the state space (Tabajara and Vardi 2019). This
work contributes towards the development of LTLf-to-DFA
conversion techniques that are aimed at advancing the scal-
ability of LTLf synthesis.

Prior works on LTLf-to-DFA conversion have led to two
contrasting algorithmic approaches. In the first approach
(Zhu et al. 2017b), the state-space of the DFA is repre-
sented explicitly, the construction is syntax driven, and the
DFA is aggressively minimized. This approach first converts
LTLf to an equivalent first-order-logic formula and then con-
structs a DFA for this formula using the MONA tool (Hen-
riksen et al. 1995). The MONA algorithm first produces the
binary syntax tree of the specification, then traverses the
tree bottom-up while constructing the minimal DFA at each
node. Consequently, it constructs the final DFA at the root of
the tree in its canonical minimal form. Aggressive minimiza-
tion can often prevent state-space explosion, as for many
specifications arising from real-life situations the minimal
DFAs are rarely more than exponential in the size of the
specification, as opposed to double exponential (Tabakov,



Rozier, and Vardi 2012). Yet, an exponential DFA might still
be too large if the set of states is represented explicitly, and
the overhead caused by aggressive DFA minimization grows
rapidly with specification size.

The second approach, inspired by (Tabajara and Vardi
2019), represents the DFA state space symbolically, uses
a compositional construction, and avoids minimizing the
DFAs. In compositional constructions, the specification is
decomposed into multiple smaller sub-specifications for
which explicit DFA conversion is tractable. These interme-
diate DFAs are then composed to get the final DFA. The
symbolic representation encodes the state space of a DFA in
a logarithmic number of bits, potentially achieving a polyno-
mial representation even for an exponential-sized DFA, de-
pending on the complexity of the DFA’s structure. The exist-
ing compositional approach takes advantage of this by repre-
senting the intermediate DFAs symbolically. In this case, the
DFAs are composed by simply taking the symbolic product
without performing minimization. The problem with this,
however, is that each symbolic product results in a DFA with
a larger state space than its minimal DFA, as no minimiza-
tion is performed. When the number of symbolic products is
large, the overhead in the size of the state space magnifies.
Because of this, this approach ultimately produces a state
space that is so enlarged that not even the succinct symbolic
representation can compensate for the blow-up.

The key issue with both approaches is that their critical
operation is effective at small scale but becomes inhibitory at
large scale. Explicit approaches aggressively perform mini-
mization, which is efficient on small DFAs but expensive on
larger ones. Meanwhile, symbolic approaches perform sym-
bolic products without minimization. While few symbolic
products are manageable, too many products may lead to a
large blow-up in the size of the state space.

This work proposes a novel compositional approach that
is able to overcome the drawbacks of both existing ap-
proaches. Our approach utilizes a hybrid state-space repre-
sentation, i.e., at different times it uses both the explicit and
symbolic state representations for the intermediate DFAs.
The core idea is to use explicit-state representation for
the intermediate DFAs as long as minimization is not pro-
hibitively expensive, and to switch over to symbolic state
representation as soon as that occurs. This way, our hybrid-
representation approach applies explicit state representation
to small DFAs, and also delays the point at which switch-
over to symbolic representation occurs, thus ensuring that
fewer symbolic products have to be performed to generate
the final DFA. Therefore, by finding a balance between the
two representations, our hybrid appoach is able to extract
their benefits and mitigate their weaknesses.

We have implemented our LTLf-to-DFA conversion algo-
rithm, and its extension to LTLf synthesis via reachability
games, in tools called LISA and LISASYNT, respectively. A
comprehensive empirical analysis reveals the merits of the
proposed hybrid compositional approach on both DFA con-
version and LTLf synthesis, as each tool outperforms the
current state-of-the-art in runtime and memory consump-
tion. In addition, the DFAs generated from LISA have size
comparable to the minimal DFA and significantly smaller

than those obtained from pure symbolic-state methods.

2 Preliminaries
Linear Temporal Logic over Finite Traces
Linear Temporal Logic over finite traces (LTLf) (Baier
and McIlraith 2006; De Giacomo and Vardi 2013) extends
propositional logic with finite-horizon temporal operators.
In effect, LTLf is a variant of LTL (Pnueli 1977) that is in-
terpreted over a finite rather than infinite trace. The syntax
of an LTLf formula over a finite set of propositions Prop is
identical to LTL, and defined as ϕ := a ∈ Prop | ¬ϕ |
ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕ Uϕ | Fϕ | Gϕ. Here X (Next),
U (Until), F (Eventually), G (Always) are temporal oper-

ators. The semantics of LTLf can be found in (De Giacomo
and Vardi 2013). W.l.o.g., we assume that every LTLf for-
mula ϕ is written as a conjunction of LTLf subformulas i.e.
ϕ =

∧n
i=1 ϕi. The language of an LTLf formula ϕ, denoted

by L(ϕ), is the set of finite words over 2Prop that satisfy ϕ.
LTLf synthesis is formally defined as follows:

Definition 1 (LTLf Synthesis). Let ϕ be an LTLf formula
over Prop = I ∪ O where the set of input variables I and
output variables O are two disjoint sets of propositions. We
say ϕ is realizable if there exists a strategy γ : (2I)+ → 2O

such that for every infinite sequence λ = I0, I1, · · · ∈ (2I)ω

of interpretations over I, there exists m ≥ 0 such that ρ =
(I0∪γ(I0)), (I1∪γ(I0, I1)), · · · , (Im∪γ(I0, · · · , Im)) sat-
isfies ϕ. The problem of LTLf synthesis is to decide whether
a given ϕ is realizable and to construct such a strategy if so.

Intuitively, LTLf synthesis can be perceived as a game be-
tween an external environment and the desired system that
take turns to assign values to input and output propositions,
respectively. The system responds to the environment in-
puts using the strategy γ. The game is won by the system
if its strategy is able to guarantee that the resultant input-
output sequence will satisfy formula ϕ after a finite number
of turns. In our formulation of LTLf synthesis, like in (Taba-
jara and Vardi 2019), the environment plays first. Alterna-
tively, the system may play first (Zhu et al. 2017b). Solving
the alternative formulation requires only slight changes to
the algorithm presented in (§ 5). We adhere to the formula-
tion in Definition 1 in this paper as our benchmarks assume
that formulation and all tools being compared support it.

DFA and Its Representations
A deterministic finite automaton (DFA) (Thomas, Wilke,
and others 2002) is a tuple D = (Σ, S, ι,∆, F ) where Σ is a
finite set of symbols (called an alphabet), S is a finite set of
states, ι ∈ S is the initial state, F ⊆ S is the set of accepting
states and ∆ : S×Σ→ S is the transition function. A finite
word w = w0 . . . wn ∈ Σ∗ has a run ρ = s0 . . . sn+1 ∈ S+

in D if for all i ∈ {0, . . . n} we have that si+1 = ∆(si, wi)
and s0 = ι. A run ρ = s0 . . . sn+1 is an accepting run in D
if sn+1 ∈ F . A word w is in the language of D, L(D), if w
has an accepting run in D. A DFA is said to be minimal if
the language represented by that DFA cannot be represented
by another DFA with fewer states.

Every LTLf formula ϕ over Prop can be converted into a
DFA D with alphabet Σ = 2Prop (De Giacomo and Vardi



2013) such that L(D) = L(ϕ). If this DFA is constructed
in a form that explicitly enumerates all DFA states, we call
it an explicit-state representation. A DFA over the alpha-
bet Σ = 2Prop can also be compactly represented sym-
bolically, by also encoding the state space using a log-
arithmic number of propositions. The symbolic-state rep-
resentation of a DFA D = (2Prop, S, ι,∆, F ) is a tuple
D = (S(Z), T (Z,Prop,Z ′),F(Z)). In this representa-
tion, Z = {z1, . . . zn} are propositions encoding the state
space S, with n = dlog |S|e, and their primed counter-
parts Z ′ = {z′1, . . . z′n} encode the next state. Each state
s ∈ S corresponds to an interpretation Z ∈ 2Z over propo-
sitions Z . When representing the next state of the transition
function, the same encoding is used for an interpretation Z ′
over Z ′. Then, S, T and F are Boolean formulas represent-
ing ι, ∆ and F , respectively. S(Z) is satisfied only by the
interpretation of the initial state ι over Z . T (Z,Prop,Z ′)
is satisfied by interpretations Z ∈ 2Z , P ∈ 2Prop and
Z ′ ∈ 2Z

′
iff ∆(s, P ) = s′, where s and s′ are the states

corresponding to Z and Z ′. Lastly, F(Z) is satisfied by the
interpretation Z over Z corresponding to state s ∈ S iff
s ∈ F . The intersection of two DFAs D1 = (S1, T1,F1)
and D2 = (S2, T2,F2), denoted D1 ∧ D2, is given by
(S1 ∧ S2, T1 ∧ T2,F1 ∧ F2). In this paper, all Boolean for-
mulas, including S , T and F of a symbolic DFA, will be
encoded using Reduced Ordered Binary Decision Diagrams
(BDDs) (Bryant 1986).

DFA Game
A DFA game is a reachability game between two players,
called the environment and the system, played over a DFA
with alphabet 2I∪O. The environment player assigns val-
ues to the input variables I, while the system assigns val-
ues to the output variables O. The DFA game starts at the
initial state of the DFA. At each round of the game, first
the environment chooses an assignment I to the I variables,
and then the system will choose an assignment O to the O
variables. The combined assignment I ∪ O determines the
unique state the game moves to according to the transition
function of the DFA. The system wins the game if the game
reaches an accepting state of the DFA. Solving a DFA game
corresponds to determining whether there exists a strategy
for the system to always win the game.

DFA games are known to be solvable in polynomial time
with respect to the number of states (Mazala 2002). The al-
gorithm determines if the initial state is a winning state, i.e.,
a state that is either accepting or from which, for every as-
signment I to the I variables, the system can always choose
an assignment O to the O variables that leads to a winning
state. More details will be given in (§ 5). If the initial state
is a winning state, then there exists a winning strategy that
can be represented by a Mealy machine that determines the
output of the system given the current state and input. For
more details, refer to (Tabajara and Vardi 2019).

3 Related Work
LTLf to DFA Conversion There are two commonly used
approaches for the conversion currently. In the current state-

of-the art approach, the LTLf formula is translated into first-
order logic over finite traces, and then converted into a DFA
by MONA, a more general conversion tool from monadic
second-order logic to DFA (Henriksen et al. 1995). The first
LTLf synthesis tool SYFT utilizes this method for DFA gen-
eration (Zhu et al. 2017b).

An alternative approach, used by the tool SPOT (Duret-
Lutz et al. 2016), is to translate the LTLf formula into an LTL
formula with equivalent semantics, convert this formula into
a Büchi automaton (Gerth et al. 1995), and then transform
this Büchi automaton into a DFA. Both approaches generate
a DFA in explicit state-space representation.

DFA vs. NFA NFAs are more general than DFAs. In
fact, NFAs can be constructed from an LTLf formula in
a single-exponential blow-up as opposed to the double-
exponential blow-up incurred for DFA construction. Various
approaches for LTLf-to-NFA with single-exponential blow-
up have been described such as (Baier and McIlraith 2006;
De Giacomo and Vardi 2015). Yet, in practice, single expo-
nential NFA conversion tools do not perform as well as DFA
conversion tools. (Tabakov, Rozier, and Vardi 2012) shows
that minimal DFAs from LTLf formulas tend to be orders of
magnitude smaller than their NFA counterparts constructed
from implementations of the single-exponential algorithms.

LTLf Synthesis As aforementioned, current state-of-the-
art tool SYFT (Zhu et al. 2017b) uses MONA to construct an
explicit-state DFA, then converts this DFA into a symbolic
representation in order to solve the game using a symbolic
fixed-point computation. The explicit-state DFA construc-
tion has been identified as the primary bottleneck to SYFT
as the length of the formula increases. Therefore, recent at-
tempts in synthesis have been made to avoid the explicit
DFA construction. We describe these attempts below.

A recent approach attempted to avoid the full construction
by instead decomposing the specification into conjuncts,
then converting each conjunct to an individual DFA (Taba-
jara and Vardi 2019). Since these conjuncts are smaller for-
mulas, their explicit-state DFAs can be constructed effi-
ciently. The smaller DFAs are then converted into a symbolic
representation and the game is solved over this decomposed
symbolic representation. While the construction was indeed
more efficient in terms of time and memory, the resulting
DFA had a much larger state space. This severely decreased
the performance of the game-solving algorithm, rendering a
poorly scaling procedure for LTLf synthesis.

In another attempt to avoid explicit DFA construction,
(Camacho et al. 2018) first constructs an NFA from the for-
mula and then reduces synthesis to fully-observable non-
deterministic (FOND) planning. The NFA is determinized
on-the-fly during the planning phase. Even here, the speci-
fication is decomposed into conjuncts, which are separately
converted to NFAs and used to encode to FOND. Despite
the generalization to NFAs, in practice FOND-based meth-
ods rely on DFA conversion tools since they are more com-
petitive than existing NFA construction tools that incur a
single-exponential blow up. Previous experiments suggest
the FOND-based approach is complementary with the ap-
proach based on explicit DFA construction, each being able



to solve instances that the other cannot.

Compositional Techniques in Temporal Synthesis Both
(Tabajara and Vardi 2019) and (Camacho et al. 2018) benefit
from compositional techniques as they both decompose the
input formula into conjuncts before construction of the re-
spective automata. Application-specific decomposition has
also been shown to lead to an orders-of-magnitude improve-
ment in LTLf synthesis for robotics (He et al. 2019).

A precedent for compositional techniques exists also in
synthesis of LTL over infinite traces. Some state-of-the-art
tools are STRIX (Meyer, Sickert, and Luttenberger 2018)
and ACACIA+ (Bohy et al. 2012). STRIX decomposes the
formula semantically, i.e., it generates a subformula if it be-
longs to a restricted fragment of LTL such as safety LTL or
co-safety LTL. This way it benefits from constructing au-
tomaton using more efficient fragment-specific algorithms.
On the other hand, ACACIA+ decomposes the formula into
conjuncts, which are each solved as a separate safety game.
The final solution is obtained by composing solutions from
the separate safety games.

4 Hybrid Compositional DFA Generation
This section describes the primary contribution of this work.
We present a novel compositional approach for LTLf-to-
DFA conversion. Our approach is based on using a hybrid-
state representation, i.e., at different times it uses both ex-
plicit and symbolic-state representations for intermediate
DFAs, as opposed to prior works in which only one of
the two state-representations is used (Zhu et al. 2017b;
Camacho et al. 2018; Tabajara and Vardi 2019). By diligent
application of both representations, our hybrid approach is
able to leverage their complementary strengths and render
an algorithm that is not only competitive time- and memory-
wise, but also generates DFAs with small number of states.

Our compositional approach is comprised of two phases,
called the decomposition phase and the composition phase.
In the decomposition phase, the input formula is first decom-
posed into smaller subformulas which are then converted
into their equivalent DFAs using standard algorithms. In the
composition phase, the intermediate DFAs are composed to
produce the final DFA. We describe each phase for our hy-
brid approach in detail below. The formal description has
been deferred to the Appendix in (Bansal et al. 2019).

Decomposition Phase
The decomposition phase is the first step in our algorithm.
This phase receives the LTLf formula ϕ as input. We make
an assumption that the formula is given as the conjunction of
multiple small LTLf subformulas, i.e., ϕ =

∧n
i=1 ϕi where

each ϕi is an LTLf formula in itself. This assumption has
been adopted as a standard practice in synthesis domains as
large specifications arising from applications tend to exhibit
this form (Filiot, Jin, and Raskin 2010; 2011).

We interpret formula ϕ as an n-ary syntax tree as op-
posed to a binary-tree. Consequently, the input formula ϕ =∧n

i=1 ϕi is decomposed into n-subformulas ϕ1, . . . , ϕn.
Then each of these subformulas ϕi is converted into its min-
imal DFA Di in explicit-state representation. This can be

performed by an existing tool (De Giacomo and Vardi 2013;
Duret-Lutz et al. 2016; Henriksen et al. 1995; Kupferman
and Vardi 1999). More advanced decomposition schemes
could be adopted from (Camacho et al. 2018).

The rationale behind this step is that existing explicit-state
tools are efficient in generating minimal DFA for small for-
mulas. Since the subformulas are typically small in length,
we are able to benefit from existing literature in this step.

Composition Phase
The composition phase receives the minimal DFAs Di for
subformulas ϕi in the previous phase, which are represented
with explicit states. Our goal in this phase is to construct a
DFA corresponding to ϕ. In theory, this can be obtained by
simply taking the intersection of DFAs Di. In practice, the
intersection of n DFAs may lead to state-space explosion
since DFA intersection is done by performing their product
construction. Therefore, the main focus of the composition
phase is about how to efficiently construct the intersection
without incurring state explosion. We discuss the salient fea-
tures of our algorithm before describing it in detail.

Briefly speaking, we perform the composition of DFAs in
iterations. In each iteration, two DFAs are selected based on
a dynamic smallest-first heuristic, which will be described
below, and removed from the set. A new DFA is formed by
the product of the two selected DFAs. The new DFA will be
minimized based on a selective DFA heuristic, which is also
described below. The new DFA is then inserted back into
the set. The new set is the input to the next iteration. This
continues until only one DFA remains, which is presented
as the final DFA. In the following, we denote by Sj the set
of DFAs at the j-th iteration. Then S1 = {D1, . . . , Dn}, and
Sn = {D} where D is the final output DFA.

In contrast to prior works which either use explicit states
or symbolic states, the central feature of our algorithm is that
it uses hybrid representation for DFAs, i.e., in different iter-
ations all DFAs in Sj are either represented in explicit- or
symbolic-state form. Initially, all DFAs in S1 are in explicit-
state form. This continues while the DFAs in Sj have a
small number of states, since the product and minimization
of DFAs are efficient for small DFAs with explicit-state rep-
resentation. But as some DFAs in Sj grow in size they re-
quire more memory and longer time to perform minimiza-
tion. So, as soon as some DFA in Sj reaches a large number
of states, all DFAs in Sj are converted into symbolic-state
representation, in which the DFAs are represented more suc-
cinctly. By this time, hopefully, we are left with few DFAs in
the set Sj . Here onwards, all DFAs are represented in sym-
bolic form until the end of the algorithm. Therefore, fewer
DFAs in Sj implies fewer symbolic products need to be per-
formed, and hence limits the blow-up in state-space of the
final DFA. This way, our algorithm balances the strengths of
both approaches, mitigates their individual drawbacks, and
efficiently generates a small DFA, if not the minimal.

We now describe the two heuristics, namely dynamic
smallest-first composition of DFAs and selective DFA min-
imization abbreviated to DSF and SDM, respectively.

We first discuss DSF, which is used to decide which two
DFAs should be composed in each iteration. We observe



that the order in which intersection of DFAs is performed
does not affect the correctness of the final DFA since both
Boolean conjunction and DFA intersection are associative
and commutative operations. In theory, we can design any
criteria to select two DFAs to be composed at each iteration.
In practice, a careless choice of the two DFAs may pro-
duce an unnecessarily large intermediate DFA that causes
the algorithm to fail at the composition phase due to the
large memory footprint. Therefore, we aim to find an order
that can optimize time and space in the composition phase.
To help with that we use DSF, which as the name suggests
chooses the smallest two DFAs in each iteration. The DFAs
with explicit states are chosen based on the number of states,
while the DFAs with symbolic-state representation are cho-
sen based on the number of nodes in the BDD representation
of the transition function. The intuition behind this heuristic
is that if the algorithm would fail on the composition of the
smallest two DFAs in that iteration, then it would probably
fail on the composition of all other pairs of DFAs as well.

Next we discuss SDM, which decides when it is benefi-
cial to perform DFA minimization after the intersection of
DFAs in each iteration. DFA minimization has been proved
to be critical to the performance of DFA generation in (Hen-
riksen et al. 1995) as it helps in maintaining a smaller num-
ber of states, which is also one of our critical parameters.
However, it is also an expensive operation. Currently, the
best known complexity for minimization areO(n log n) and
O(n2) for explicit- and symbolic-state representations, re-
spectively (Hopcroft 1971; Wimmer et al. 2006). Therefore,
there is a tension between reducing the number of states and
achieving efficiency. To resolve this, we conducted an em-
pirical study to evaluate the effect of minimization. We ob-
served that in most cases, minimization reduces the num-
ber of states by 2-3 times. While this is significant when
the states are represented explicitly, in symbolic-state rep-
resentation this leads to a reduction in 1-2 state variables
only. Therefore, we adhere to the SDM heuristic in which
we minimize intermediate DFAs in explicit-state representa-
tion only. There are two advantages to this. First, since min-
imization is performed on explicit-state representation only,
by virtue of our algorithm design this occurs only when the
DFAs are small. For these, the time spent in minimization is
so low that it is worth maintaining minimal DFAs. Second,
by maintaining minimal DFAs in the explicit-form, the al-
gorithm delays the switch over to symbolic form as the DFA
sizes take longer to reach the thresholds. This leads to fewer
symbolic products, which results in curbing the amount of
blow-up in state-space.

A semi-formal description of the steps of the algorithm
are given below. The complete description has been deferred
to (Bansal et al. 2019).

Step 0. (Initial) We are given input formula ϕ =
∧n

i=1 ϕi,
and switch-over threshold values t1, t2 > 0. The parameters
t1 and t2 correspond to the thresholds for the numbers of
states in an individual DFA and in the product of two DFAs,
respectively, to trigger the symbolic representation.

Step 1. (Decomposition) Construct the minimal DFA Di

in explicit-state representation for all i ∈ {1, . . . , n}. Create

the set S1 = {D1, . . . , Dn}.

Step 2. (Explicit-state Composition) For j ∈ {1, . . . , n−
1}, let Sj = {M1, . . . ,Mn−j+1} be the set of DFAs in the
j-th iteration.

If Sj has only one DFA, return that as the solution.
Otherwise, if the DFAs in Sj become too large, proceed to

Step 3. Assume w.l.o.g. that M1 and M2 are the two DFAs
chosen by the DSF heuristic. Let |A| denote the number
of states in a DFA A represented in explicit-state form. If
min(|M1|, |M2|) > t1 or (|M1| · |M2|) > t2, move to Step
3. Let k be the iteration in which this occurs, i.e. when j = k.

Otherwise, as per SDM, construct DFA P by minimiza-
tion of M1 ∩M2. Then, create Sj+1 = {P,M3, . . . ,Mn}
for the next iteration, and repeat Step 2.

Step 3. (Change State Representation) Convert all
DFAs in Sk = {M1, . . . ,Mn−k+1} from explicit-state to
symbolic-state representation, and proceed to Step 4. Note
that the state space of each DFA Mi is encoded symboli-
cally using a different set of state variables Zi, where all Zi

are disjoint. Since no more minimization occurs after this
point, the total set of state variables Z = Z1∪ . . .∪Zn−k+1

defines the state space of the final DFA.

Step 4. (Symbolic-state Composition) For
j ∈ {k, . . . , n}, let Sj = {M1, . . . ,Mn−i+1} be the
set of DFAs in the j-th iteration.

If Sj has only one DFA, return that DFA as the solution.
Otherwise, assume w.l.o.g. that M1 and M2 are the two

DFAs chosen by the DSF heuristic. Construct P = M1 ∧
M2. Recall that, since M1 and M2 are in symbolic form,
we do not perform DFA minimization of P . Create Si+1 =
{P,M3, . . . ,Mn} for the next iteration, and repeat Step 4.

5 LTLf Synthesis
LTLf synthesis can be reduced to solving a DFA game
played on the DFA corresponding to the formula ϕ (De Gi-
acomo and Vardi 2015). As explained in (§ 2), this amounts
to computing the set of winning states. If the initial state of
the DFA is in this set, then the formula is realizable and a
winning strategy can be constructed, otherwise not.

In this section, we describe the winning set computation
algorithm on a DFA game when its states are represented
symbolically. This is a standard least-fixed point algorithm
for reachability games with symbolic state space, and is sim-
ilar to (Zhu et al. 2017b; Tabajara and Vardi 2019). For sake
of completion, we summarize the algorithm here.

Let ϕ be an LTLf formula over disjoint input and
output propositions I and O, respectively, and G =
(S(Z), T (Z,Prop,Z ′),F(Z)) be a symbolic DFA for ϕ.
The DFA game is played on G. In our case, this DFA is ob-
tained from our hybrid compositional approach (§ 4), which
we assume is in symbolic form, since explicit-state outputs
can easily be converted to symbolic form.

To compute the winning set of G, we compute the least-
fixed point of a Boolean formula Wi(Z) that denotes the set
of states from which the system can win in at most i steps of
the DFA game. Initially,W0(Z) is the setF(Z) of accepting
states. At each iteration, the algorithm constructs Wi+1(Z)



from Wi(Z) by adding those states from which the system
is guaranteed to reach Wi(Z) in one step. Formally,

Wi+1(Z) =Wi(Z)

∨(∀I.∃O,Z ′.T (Z, I ∪ O,Z ′) ∧Wi(Z ′))

where Wi(Z ′) can be obtained from Wi(Z) by substituting
variables Z with Z ′. This continues until no more states can
be added to Wi+1(Z), i.e., until it encounters the first index
i such that Wi+1(Z) ≡ Wi(Z). Since the number of states
in the DFA is finite, the algorithm is guaranteed to terminate.
The initial state is present in the winning set, say WFP(Z),
if S(Z) =⇒ WFP(Z) holds. Details on winning-strategy
construction has been deferred to (Tabajara and Vardi 2019).

In this work, all Boolean formulas for G and all Wi+1(Z)
are represented as BDDs. All boolean operations, quantifica-
tion and variable substitution are available in standard BDD
libraries. Finally, ≡ is a constant time operation in BDDs.

The complexity of solving a DFA game is polynomial in
the size of the state space. Therefore, the efficiency of LTLf
synthesis is heavily affected by the size of the constructed
DFA. Therefore, as our hybrid compositional approach gen-
erates small (if not minimal) DFAs, these are suitable for
synthesis, as witnessed also by our experimental evaluation.

6 Experimental Evaluation
The goal of the empirical analysis is to examine the perfor-
mance of our hybrid approach in LTLf-to-DFA generation
and LTL synthesis against existing tools and approaches.

Implementation Details
Our hybrid compositional LTLf-to-DFA conversion proce-
dure (§ 4) has been implemented in a tool called LISA. LISA
has been extended to LISASYNT to perform LTLf synthesis
using the winning strategy computation described in (§ 5).

LISA takes an LTLf formula and switch-over thresholds
t1, t2 as inputs, and outputs a corresponding DFA with sym-
bolic states. The output may not be minimal. For the same
inputs, LISASYNT internally invokes LISA, solves the DFA
game given by LISA’s output, and returns whether the for-
mula is realizable. If so, it can also return a winning strategy.

LISA and LISASYNT have been written in C++. They em-
ploy BUDDY (Cohen et al. 2014) as their BDD library for
the symbolic representations and operations on DFAs, and
take advantage of dynamic variable ordering for the BDDs.

To generate explicit-state minimal DFAs in the decompo-
sition phase, LISA uses SPOT (Duret-Lutz et al. 2016) and
the MONA-based method (Henriksen et al. 1995). It borrows
the rich APIs from SPOT to conduct DFA intersection and
minimization in the explicit-state composition phase. Per se,
SPOT APIs are available for ω-automata (automata over in-
finite words). In order to use the SPOT API for operations
over DFAs, LISA stores intermediate explicit DFAs as weak
deterministic Büchi automata (wDBA) (Dax, Eisinger, and
Klaedtke 2007). Intuitively, if the DFA accepts the language
L, then its wDBA accepts the languageL·({ loop})ω , where
loop is a fresh variable not present in Prop. The wDBA can

be constructed from the DFA for L by making the following
changes (a) add a new state sink, (b) for each accepting state

# States in
the minimal DFA

Number of benchmarks solved
Mona-
based

Lisa-
Explicit Lisa

≥ 1K 111 123 137
≥ 5K 70 82 96
≥ 10K 48 60 74
≥ 50K 13 23 35
≥ 100K 8 16 26
≥ 250K 1 5 12
≥ 500K 0 2 4
≥ 750K 0 2 2

Size unknown – – 21**
Total solved 307 338 372

Table 1: DFA construction. Hardness of benchmarks is mea-
sured by the size of minimal DFA. **Note: There are 34
benchmarks that were solved only by LISA. Of these, the
size of the minimal DFA of 13 benchmarks were identified
using a symbolic DFA minimization algorithm (Wimmer et
al. 2006). The 21 cases with unknown size are those that
could not be minimized even after 24hrs with 190GB.

in the DFA, add a transition from that state to sink on loop,
(c) add a transition from sink to itself on loop, (d) make
sink the only accepting state in the wDBA. This automaton
accepts a word iff its run visits sink infinitely often. Since
wDBA is an ω-automaton, we use SPOT APIs for wDBAs to
conduct intersection and minimization, both of which return
a wDBA as output, in a similar complexity for those opera-
tions in a DFA (Dax, Eisinger, and Klaedtke 2007; Kupfer-
man 2018). Lastly, a wDBA for language L · ({ loop})ω can
be easily converted back to a DFA for language L.

Design and Setup for Empirical Evaluation 1

The evaluation has been designed to compare the perfor-
mance of LISA and LISASYNT to their respective exist-
ing tools and approaches. LTLf-to-DFA conversion tools are
compared on runtime, number of benchmarks solved, hard-
ness of benchmarks solved (size of minimal DFA) and the
number of state variables in the output DFA. LTLf synthesis
tools are compared on runtime and the number of bench-
marks solved. We conduct our experiments on a benchmark
suite curated from prior works, spanning classes of realistic
and synthetic benchmarks. In total, we have 454 benchmarks
split into four classes: random conjunctions (400 cases) (Zhu
et al. 2017b), single counters (20 cases), double counters (10
cases) and Nim games (24 cases) (Tabajara and Vardi 2019).
We defer more details to (Bansal et al. 2019).

A good balance between explicit- and symbolic-
representation of states is crucial to the performance of
LISA, i.e., it is crucial to carefully choose values of the
switch-over thresholds t1 and t2. Recall the switch is trig-
gered if either the smallest minimal DFA has more than t1
states, or if the product of the number of states in the two
smallest minimal DFAs is more than t2. Intuitively, we want
t1 to be large enough that the switch is not triggered too

1Figures are best viewed online in color.
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Figure 1: DFA construction. Cactus plot indicating number
of benchmarks each tool can solve for a given timeout.

soon but small enough that conversion of all DFAs from
explicit- to symbolic-state representation is not too expen-
sive. Threshold t2 is closely related to how effective mini-
mization is, and hence depends on the benchmark class. If
the benchmark class is such that minimization reduces the
DFA size by only 2-3 times, then we would set t2 to be a
low value. But if the class is such that minimization reduces
DFA size by orders of magnitude, as it does for the Nim
game class, we set t2 to a higher value to take advantage of
minimization. Currently, these are determined empirically.
We set t1 = 800 and t2 = 300000 for the Nim-game class
and to t1 = 800 and t2 = 2500 for all other classes.

For experiments on LTLf-to-DFA conversion, we com-
pare LISA to the current-state-of-the-art MONA-based
method (Zhu et al. 2017b; Camacho et al. 2018) and two
other derivations of LISA. Recall the MONA-based method
is a syntax-driven, explicit-state based approach that re-
turns minimal DFAs. The first derivation is LISA-EXPLICIT
which is adapted from LISA by setting t1 = t2 =∞. There-
fore, it is a purely explicit-state compositional approach.
Like the MONA-based method, it also generates the minimal
DFA, but unlike the former it uses the smallest-first heuristic.
The second derivation is LISA-SYMBOLIC, adapted from
LISA by setting t1 = t2 = 0. This corresponds to the com-
positional, symbolic-state approach referred to in (§ 1).

For experiments on LTLf synthesis, we compared LISAS-
YNT to an enhanced version of SYFT (a tool that uses
the MONA-based method for DFA conversion) (Zhu et al.
2017b) that we call SYFT+, SYNKIT (Camacho et al. 2018),
and the partitioned approach from (Tabajara and Vardi
2019), referred to as PART. SYFT+ was created by enabling
dynamic variable ordering in SYFT. This was necessary for
a fair comparison as SYFT, unlike LISASYNT and PART,
uses static variable ordering. We observed that SYFT+ shows
upto 75% reduction in runtime compared to SYFT. For
SYNKIT, we report the results without automata decomposi-
tion, since decomposing the formulas in the same granularity
used for LISA decreased performance, and we lack methods
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to symbolically represent the DFA’s state-space for double-
counter benchmarks. No bar indicates time/memout.

for choosing a better granularity for this tool. This behav-
ior is consistent with observations in (Camacho et al. 2018)
and (Tabajara and Vardi 2019) that too much decomposi-
tion is detrimental for performance as it leads to state-space
explosion. Note that PART uses the same symbolic-state ap-
proach as LISA-SYMBOLIC for constructing the DFAs, ex-
cept that it skips the composition step, instead performing
synthesis directly over the initial set of symbolic DFAs S1.
Ultimately, it still suffers from the state-space explosion,
only in this case it happens during the winning-state com-
putation.

All experiments were conducted on a single node of a
high-performance cluster. Each node consists of four quad-
core Intel-Xeon processor running at 2.6 GHz. LTLf-to-DFA
conversion experiments were run for 1 hour with 8 GB each,
LTLf-synthesis experiments for 8 hours with 32 GB each.



Observations
LISA and LISA-EXPLICIT scale better to larger bench-
marks than the MONA-based method, not just solving more
total benchmarks but also being able to handle instances of
larger scale (Table 1). Compared to MONA, LISA-EXPLICIT
is more consistent in solving benchmarks with large mini-
mal DFAs due to the DSF heuristic that enables low mem-
ory consumption in intermediate stages. Finally, LISA solves
benchmarks with even larger minimal DFAs as it is designed
to combine minimal DFAs of explicit state- and succinctness
of symbolic-state representation to solve larger formulas.

LISA is the most efficient tool among all four options.
This is clear from the cactus plot in Fig. 1. The plot may
seem to indicate that LISA only has a slight advantage over
LISA-SYMBOLIC. But, on closer inspection we observe that
LISA-SYMBOLIC solves most random benchmarks but fares
poorly on the realistic ones (see Fig 2). This is because they
have more sub-specifications, resulting in a large number
of symbolic products. The MONA-based method is still the
fastest in generating small DFAs (fewer than 50K states) but
memouts soon due to explicit-state representation of DFAs.
Finally, LISA-EXPLICIT is a close second but does not scale
as well as LISA due to minimization on very large DFAs.
LISA has been designed to overcome these deficiencies, and
is supported by the current empirical evaluation as well.

LISA mitigates state-space explosion. Even though
LISA may not generate the minimal DFAs, we observe that
in most cases the state-space of the final DFA produced by
LISA is one or two variables more than that of the min-
imal DFA. This is significantly lower than the number of
state variables used by LISA-SYMBOLIC (Fig. 3). Note that
LISA-SYMBOLIC fails to solve the double counter bench-
marks for i ≥ 7 (Fig 2). Yet we know the number of
state variables immediately after Step 3 (§ 4). Analyzing
the benchmarks, we observed that they were split into 3-
200 sub-formulas, yet only 1-3 symbolic products were con-
ducted to construct the DFA. This demonstrates that our
threshold-values are able to delay the switch-over to sym-
bolic representations and reduce blow-up by the product.
This is why the DFAs generated by LISA have comparable
sizes to the minimal DFAs. An important future work, there-
fore, is to design mechanisms to determine the switch-over
thresholds at runtime as opposed to relying on user-expertise
to assign threshold values.

LISA’s small DFAs improve synthesis performance.
We evaluate for synthesis on non-random benchmarks only,
i.e., sequential counters and Nim games. We chose to disre-
gard random benchmarks as their winning set computation
time is negligible, as in those benchmarks the fixed-point is
reached in 2-3 iteration irrespective of the DFA size. Fig-
ure 4-5 show that LISASYNT solves most benchmarks and
is the most efficient tool. We observed that SYFT+ fails be-
cause MONA memouts early, while SYNKIT memouts dur-
ing the planning stage and PART suffers from state-space
explosion while solving the game. LISASYNT is resilient to
both as LISA consumes low memory by virtue of symbolic
representation and small state space.

The time consumed inside the winning set computation
during synthesis depends on the number of iterations before
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the fixed-point is reached. Yet, so far not much focus has
been given to optimizing this step as the DFAs generated so
far have not been large enough for the number of iterations
to become an issue. With LISA’s ability to construct large
DFAs, we were able to observe that the single and double
counter benchmarks can spend more than 90% of the time in
the winning set computation, as the number of iterations is
exponential in the number of bits (see (Bansal et al. 2019)).
This provides concrete evidence of the importance of inves-
tigating the development of faster algorithms for winning set
computation to improve game-based synthesis.

7 Concluding Remarks
This work tackles the primary bottleneck in LTLf synthesis-
LTLf to DFA conversion. The central problem addressed
in this work is the efficient and scalable construction of
DFAs with small state space from LTLf specifications, as
a step to LTLf synthesis. To the best of our knowledge,
ours is the first hybrid approach for DFA construction. Our
approach combines explicit- and symbolic-state representa-



tions in a manner that effectively leverages their strengths
and alleviates their individual shortcomings. Our empirical
evaluations on DFA conversion and LTLf synthesis on LISA
and LISASYNT outperform the current states of the art, and
demonstrate the merit of our hybrid approach. This indicates
promise to further develop and explore hybrid approaches
for automaton generation for other specification languages
as well, and encourages similar investigations into the other
building blocks in synthesis algorithms.
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