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1 Goals of the Tutorial
This tutorial will introduce the AAAI audience to the emerg-
ing interdisciplinary research on Reinforcement Learning
(RL) from Logical Specifications. The unprecedented prolif-
eration of data-driven approaches, especially machine learn-
ing, has put the spotlight on building trustworthy AI through
the combination of the contrasting characteristics of logi-
cal reasoning and machine learning. Reinforcement Learn-
ing from Logical Specifications is one such topic where for-
mal logical constructs are utilized to overcome challenges
faced by modern RL algorithms and their applications. Re-
search on this topic is scattered across venues targeting sub-
areas of AI. Foundational work has appeared at formal meth-
ods and artificial intelligence venues. Algorithmic develop-
ment and applications have appeared at machine learning,
robotics, and cyber-physical systems venues. Through this
tutorial, we aim to consolidate recent progress in one capsule
for a typical AI researcher. The tutorial will be designed to
explain the importance of using formal specifications in RL
and encourage researchers to apply existing techniques for
RL from logical specifications as well as contribute to the
growing body of work on this topic.

This tutorial will introduce reinforcement learning as a
tool for automated synthesis of control policies and discuss
the challenge of encoding long-horizon tasks using rewards.
We will then formulate the problem of reinforcement learn-
ing from logical specifications and present recent progress in
developing scalable algorithms as well as theoretical results
demonstrating the hardness of learning in this context.

Keywords. Reinforcement Learning, Temporal Logic,
Planning and Control, PAC Learning, Synthesis.

2 Overview
Overview of Tutorial. This tutorial will be organized
around four themes covering major developments in re-
inforcement learning (RL) from logical specifications, de-
scribed as follows:
1. Introduction to RL: Beginning with seminal results in

RL, we will describe RL as a data-driven tool for au-
tomated synthesis of control policies and discuss few re-
cent successes. We will then discuss the challenges faced
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by traditional RL in learning long-horizon tasks, where
RL is defined as a reward-optimization problem.

2. Reinforcement Learning from Logical Specifications:
Motivated by the success of logical specifications in (non
data-driven) planning and control synthesis for long-
horizon tasks, we will introduce the problem of RL
from logical specifications as an approach to mitigate
the shortcomings of traditional RL based on reward-
optimization.

3. Practical Algorithms: We will summarize the leading ap-
proaches to development of practical algorithms to learn
from logical specifications and describe an instance of
each approach using the logical specification language
SpectRL [19], and demonstrate few emerging tools.

4. Theoretical Foundations: In laying the theoretical foun-
dations of learning from logical specifications, we will
discuss the hardness of the problem and describe the
theoretical guarantees obtained from the previously de-
scribed practical algorithms.

History. While this tutorial will be prepared for the first
time for AAAI 2023, the presenters have presented this work
at several venues, including top-tier conferences such as
NeurIPS, AISTATS, and CAV. Recently, the presenters have
delivered parts of this tutorial as a black-board talk at the
Dagstuhl Seminar on Machine Learning and Logical Rea-
soning: The New Frontier, as an invited talk at a workshop
at the Simons Institute for the Theory of Computing, and
as a round-table discussion at WOLVERINE at FLoC 2022.
The presenters were also invited to contribute a survey on
RL from Logical Specifications to an upcoming special is-
sue journal.

Target Audience. This tutorial will be accessible to all AI
researchers. We believe researchers working on topics re-
lated to control, planning, reinforcement learning, safe AI
and formal synthesis would benefit the most from this tuto-
rial. We estimate an audience size of 50-100 people.

Prerequisites. The tutorial will be self-contained, cover-
ing all the necessary background through its course. Back-
ground in reinforcement learning and/or logical reasoning is
preferred, though not mandatory.



3 Outline
This is intended to be a short quarter-day tutorial, spanning
1 hrs 45 mins. Below, we provide a brief outline of the struc-
ture of the tutorial along with an estimate of time intended
to be spent on each part.

3.1 RL and Current Challenges (10 mins)
We will begin with a general introduction to Reinforcement
Learning (RL), briefly describing the rich history of work
over the past few decades by theoreticians and practition-
ers [29]. We will discuss few success of RL in the develop-
ment of AI systems through a data-driven approach across a
wide ranging domains, including game-playing [27], health-
care [35] and (autonomous) control systems [17, 21, 22].
We will then motivate next-gen applications of RL. In par-
ticular, we will focus on the automated synthesis of con-
trollers for performing long-horizon tasks such as naviga-
tion and manipulation [23, 24]. Prior advances in automated
synthesis for long-horizon tasks have arrived from the plan-
ning and synthesis communities. However, these approaches
often make assumptions that are violated in the real world
and even in simulations, such as finite-state models, a priori
knowledge of variables, bounded uncertainty and the like. In
contrast, RL holds the potential of synthesis with minimal
assumptions. Yet, state-of-the-art RL faces many hurdles in
realizing the holy grail. We will describe these challenges,
namely task-specification for long-horizon tasks, scalability
of algorithms, and lack of guarantees for safety-critical sys-
tems.

3.2 RL from Logical Specifications (10 mins)
This section will motivate and formally define RL from log-
ical specifications. We will begin with the traditional defini-
tion of RL as a reward-optimization problem in which opti-
mal policy is synthesized by repeated sampling the environ-
ment to obtain local rewards. This formulation implies that
the desired task for the control policy has to be encoded in
rewards. We will present the challenges faced by reward-
based task specification of long-horizon tasks, including
difficulty in task expression, non-compositionality, reward-
hacking [4] leading to generation of poor quality solutions,
etc. Next, we will describe how task-specification utilizing
temporal logic formulas can mitigate these issues. In par-
ticular, we will describe the logical specification language
SpectRL [19] which encodes long-term behaviors combin-
ing reachability and safety tasks. Finally, we will define RL
as a satisfaction-optimization problem where the goal is to
generate policy that optimizes the satisfaction probability of
the logical formula specifying the desired task.

3.3 Practical Algorithms (40 mins)
Recently, a myriad of RL algorithms [1, 6, 7, 8, 9, 10, 16,
14, 15, 36, 33, 18, 21, 30] have been proposed for learning
from logical specifications. In this part of the tutorial, we
categorize these methods into two broad classes and provide
an overview of the high-level ideas along with one concrete
algorithm for each class of algorithms, as elaborated below:

Specification to Rewards. We will begin with the natu-
ral approach explored by many early works on this topic.
Here, the goal is to automatically synthesize rewards from a
given formal specification and then to use a traditional RL
algorithm to learn an optimal policy from the synthesized re-
wards. We describe their advantage in learning stateful poli-
cies and also describe a few scalability issues. Finally, we
will describe an algorithm [19] for generating rewards from
SpectRL specifications in detail.

Compositional Algorithm. We will demonstrate through
a family of examples that, despite early progress, the naı̈ve
approach of converting specifications to rewards scales
poorly with complexity of specification due to the inherent
greedy nature of RL algorithms. We then present a composi-
tional approach for learning from specifications that lever-
age the structure of a given specification to first decom-
pose the original task into several simpler and easier-to-learn
tasks and then compose the policies learnt for these subtasks
to obtain a policy that maximizes satisfaction of the original
specification. We will describe the details of the composi-
tional approach [20] using SpectRL specifications.

Contemporary Work. Finally, we will briefly discuss
other ways in which logical specifications have been incor-
porated in RL, including shielding for Safe RL [2], verifica-
tion [5, 17] and generating interpretable and verifiable poli-
cies [31, 32].

3.4 Theoretical Foundations (35 mins)
In this part of the tutorial, we will present the theoretical
foundations of RL from logical specifications. We will be-
gin with describing the formal guarantes associated with the
specification-to-reward approach of learning algorithms [11,
13, 28]. For this, we will present a theory of reductions in
the context of RL formalizing the class of algorithms that
convert specifications to rewards. We present two kinds of
reductions, specification reduction and sampling-based re-
duction, and discuss when these reductions preserve opti-
mal or near-optimal solutions. Finally, we will discuss PAC
learning in the context of RL from logical specifications and
briefly mention recent attempts [9] at obtaining PAC algo-
rithms under addition assumptions. We then discuss recent
results [3, 34] showing that PAC algorithms do not exist for
Linear Temporal Logic (LTL) specifications and present a
high-level overview of a proof. During this course, we will
build the necessary theoretical background on LTL [25] and
conversion of LTL formulas to automaton models that sup-
port RL algorithms [12, 26].

3.5 Conclusion and Open Problems (10 mins)
The tutorial will conclude with a small demonstration of
how logical specifications can be use to learn robotics ma-
nipulation tasks in simulation, as an illustration of the util-
ity of these algorithms. Finally, we conclude with a discus-
sion on potential future work which includes designing more
sample efficient algorithms for practical applications, use of
discounting in LTL to obtain PAC algorithms, decomposi-
tion of temporal specifications into smaller ones for enabling
compositional approaches, among many others.



4 Presenters
The tutorial presenters have expertise at the intersection of
artificial intelligence, machine learning, and logical reason-
ing evident by strong publication records in AAAI/AIS-
TATS, ICML/ICLR/NeurIPS, and CAV/LICS/POPL/PLDI/-
TACAS, respectively, and applications in EMSOFT/I-
CRA/RSS. The presenters have been involved in the devel-
opment of frameworks and tools that will be discussed in
detail in the tutorial. These frameworks are based on usage
of techniques arising in formal methods and programming
languages to reinforcement learning; areas on which tutorial
presenters have deep expertise and have made fundamen-
tal contributions (Please see relevant recent publications by
presenters below for details). The tutorial presenters have
extensive experience of teaching at universities. A short bi-
ography of each presenter is attached below:

Rajeev Alur. Rajeev Alur is Zisman Family Professor of
Computer and Information Science and the Founding Di-
rector of ASSET (Center for AI-Enabled Systems: Safe Ex-
plainable, and Trustworthy) at University of Pennsylvania.
He obtained his bachelor’s degree in computer science from
IIT Kanpur in 1987 and PhD in computer science from Stan-
ford University in 1991. Before joining Penn in 1997, he was
with Computing Science Research Center at Bell Labs. His
research is focused on formal methods for system design,
and spans artificial intelligence, cyber-physical systems, dis-
tributed systems, logic in computer science, machine learn-
ing, and programming languages. He is a Fellow of the
AAAS, a Fellow of the ACM, a Fellow of the IEEE, an Al-
fred P. Sloan Faculty Fellow, and a Simons Investigator. He
was awarded the inaugural CAV (Computer-Aided Verifica-
tion) award in 2008, ACM/IEEE Logic in Computer Science
(LICS) Test-of-Time award in 2010, the inaugural Alonzo
Church award by ACM SIGLOG / EATCS / EACSL / Kurt
Goedel Society in 2016, Distinguished Alumnus Award by
IIT Kanpur in 2017 for his work on timed automata. Prof.
Alur has served as the chair of ACM SIGBED (Special In-
terest Group on Embedded Systems), the general chair of
LICS, and the lead PI of the NSF Expeditions in Computing
center ExCAPE (Expeditions in Computer Augmented Pro-
gram Engineering). He is the author of the textbook Princi-
ples of Cyber-Physical Systems (MIT Press, 2015).

Suguman Bansal. Suguman Bansal is an NSF/CRA Com-
puting Innovation Postdoctoral Fellow at the University of
Pennsylvania, mentored by Prof. Rajeev Alur. Starting Jan-
uary 2023, she will be an Assistant Professor at Georgia
Institute of Technology. Her research is focused on formal
methods and its applications to artificial intelligence, pro-
gramming languages, and machine learning. She is the re-
cipient of the 2020 NSF CI Fellowship and has been named
a 2021 MIT EECS Rising Star. She completed her Ph.D. in
2020, advised by Prof. Moshe Y. Vardi, from Rice Univer-
sity. She received B.S. with Honors in 2014 from Chennai
Mathematical Institute.

Osbert Bastani. Osbert Bastani is an Assistant Professor
of Computer and Information Science at the University of
Pennsylvania. He leads the research group on Trustworthy

Machine Learning, which broadly works on designing algo-
rithms and techniques for improving the reliability of deep
learning models; he is also a member of the ASSET Center
for Trustworthy AI, the PRECISE Center for Safe AI, and
the PRiML Center for Machine Learning. Prior to joining
Penn, he received his Ph.D. in Computer Science from Stan-
ford University in 2018, advised by Alex Aiken, and spent a
year as a Postdoc at MIT with Armando Solar-Lezama.

Kishor Jothimurugan. Kishor Jothimurugan is a final-
year PhD student at the University of Pennsylvania, advised
by Prof. Rajeev Alur. His research focuses on applications
of formal methods in reinforcement learning including RL
from formal specifications, compositional RL algorithms
and verification of neural network controllers. He received
B.S. with Honors in 2017 from Chennai Mathematical Insti-
tute.

5 Selected Relevant Publications by
Presenters

In reverse chronological order:

1. Rajeev Alur, Suguman Bansal, Osbert Bastani, and
Kishor Jothimurugan. A Framework for Transforming
Specifications in Reinforcement Learning. (To appear)
Special Journal Issue Henzinger-60.

2. Kishor Jothimurugan, Suguman Bansal, Osbert Bastani,
and Rajeev Alur. Specification-Guided Learning of Nash
Equilibria with High Social Welfare. CAV 2022.

3. Kishor Jothimurugan, Suguman Bansal, Osbert Bastani,
and Rajeev Alur. Compositional Reinforcement Learning
from Logical Specifications. NeurIPS 2021.

4. Radoslav Ivanov, Kishor Jothimurugan, Steve Hsu,
Vaidya Shaan, Rajeev Alur, and Osbert Bastani. Compo-
sitional learning and verification of neural network con-
trollers. EMSOFT 2021.

5. Osbert Bastani, Shuo Li, and Anton Xue. Safe reinforce-
ment learning via statistical model predictive shielding .
RSS 2021.

6. Kishor Jothimurugan, Osbert Bastani, and Rajeev Alur.
Abstract value iteration for hierarchical deep reinforce-
ment learning. AISTATS 2021.

7. Shuo Li and Osbert Bastani. Robust model predictive
shielding for safe reinforcement learning with stochastic
dynamics. ICRA 2020.

8. Radoslav Ivanov, Taylor J Carpenter, James Weimer, Ra-
jeev Alur, George J Pappas, and Insup Lee. Verifying the
safety of autonomous systems with neural network con-
trollers . TECS 2020.

9. Kishor Jothimurugan, Rajeev Alur, and Osbert Bastani.
Composable specifications for reinforcement learning.
NeurIPS, 2019.

10. Osbert Bastani, Yewen Pu, and Armando Solar-Lezama.
Verifiable reinforcement learning via policy extraction.
NeurIPS 2018.

11. Rajeev Alur and Tom Henzinger. Reactive Modules.
FMSD 1999.



12. Rajeev Alur, Costas Courcoubetis, Tom Henzinger, P Ho,
Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and
Sergio Yovine. The algorithmic analysis of hybrid sys-
tems. Theoretical Computer Science 1995.
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